Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (4): 500-508    DOI: 10.3785/j.issn.1008-9209.2019.09.031
Agricultural engineering     
Effects of ambient temperature and relative humidity and measurement site on the cow’s body temperature measured by infrared thermography
Jincheng HE1,2(),Xian ZHANG1,2,Suqing LI1,Qianfu GAN3
1.College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2.Fujian Engineering Research Center of Modern Agricultural Equipment, Fuzhou 350002, China
3.School of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
Download: HTML   HTML (   PDF(1787KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

We assessed the effects of ambient temperature and relative humidity on the infrared thermography (IRT) temperature of dairy cows, and evaluated the IRT body surface temperatures as effective surrogates of cow’s rectal temperature. The rectal temperature and the IRT temperatures (eyes, nose, skin) of 171 cows were measured and obtained at the ambient temperatures of -1 to 36 ℃. The standard deviations of IRT temperatures decreased with the rising of ambient temperatures. Both ambient temperature and relative humidity had significant impact on the IRT temperatures (P<0.000 1). The effect of relative humidity on the IRT temperatures was less than that of ambient temperature. Regression analysis showed that significant correlation existed between the rectal temperature and the IRT temperatures of eyes, nose and skin (P<0.000 1), with R2 being 0.494 0, 0.328 0, and 0.273 1 and the standard errors being 0.17, 0.19, and 0.20 ℃, respectively. The correlation was improved notably by breaking down the ambient temperature (T) into three segments, i.e., T≤10 ℃, 10 ℃<T≤26 ℃, T>26 ℃. Linear regression based on the segmented ambient temperature outperformed the original univariate linear correlation. Therefore, the influence of ambient temperature on the IRT temperatures cannot be ignored, and the IRT temperatures can accurately predict the body temperature using the segmented ambient temperature. Although all IRT temperatures (eyes, nose, and skin) could indicate the cow’s body (rectal) temperature, the IRT temperature of eyes is preferred because it is simple to measure, least affected by the ambient temperature, and has the highest accuracy.



Key wordsinfrared thermography      dairy cow      rectal temperature      animal welfare     
Received: 03 September 2019      Published: 11 September 2020
CLC:  S 818.9  
Corresponding Authors: Jincheng HE     E-mail: Jhe@fafu.edu.cn
Cite this article:

Jincheng HE,Xian ZHANG,Suqing LI,Qianfu GAN. Effects of ambient temperature and relative humidity and measurement site on the cow’s body temperature measured by infrared thermography. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 500-508.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.09.031     OR     http://www.zjujournals.com/agr/Y2020/V46/I4/500


环境温湿度及测量部位对奶牛红外热成像温度的影响

通过现场测量,研究环境温湿度对奶牛红外热成像(infrared thermography, IRT)温度的影响,以及使用局部体表红外热成像温度替代体内(直肠)温度测量的方法。试验在-1~36 ℃环境温度下,测量并获得了171头奶牛的直肠温度和奶牛的表皮、眼部、鼻镜的IRT温度。结果表明,IRT温度的标准差随环境温度增加而降低,环境温度、湿度对IRT温度有显著影响(P<0.000 1)。由回归分析结果可知,奶牛的眼部、鼻镜、表皮的IRT温度与直肠温度相关性显著(P<0.000 1),回归系数R2分别为0.494 0、0.328 0、0.273 1,标准误分别为0.17、0.19、0.20 ℃。将环境温度(T)值按T≤10 ℃、10 ℃<T≤26 ℃、T>26 ℃分成3段后进行回归分析,拟合优度R2显著高于未分段数据。综上所述,环境温度对IRT温度测量的影响不可忽视,建议分段计算环境温度对IRT温度的影响系数,以提高IRT温度测量精度;眼部、鼻镜、表皮的IRT温度都可以指示体内温度,但是眼部IRT温度最接近奶牛体内(直肠)温度。


关键词: 红外热成像技术,  奶牛,  直肠温度,  动物福利 
Fig. 1 Sites of surface skin of dairy cow under IRT measurement
Fig. 2 Site of eye of dairy cow under IRT measurement
Fig. 3 Site of nose of dairy cow under IRT measurement
Fig. 4 Influence of ambient temperature on the IRT temperatures of eye, nose, skin and rectal temperatureIRT-S: Infrared thermography temperature of skin on body surface; IRT-E: Infrared thermography temperature of eyes; IRT-N: Infrared thermography temperature of nose; RT: Rectal temperature.
参量 ParameterIRT-EIRT-SIRT-NRT
IRT-E皮尔逊相关性 Pearson correlation10.871**0.874**0.705**
显著性(双尾) Significance (two tailed)000
IRT-S皮尔逊相关性 Pearson correlation0.871**10.832**0.529**
显著性(双尾) Significance (two tailed)000
IRT-N皮尔逊相关性 Pearson correlation0.874**0.832**10.580**
显著性(双尾) Significance (two tailed)000
RT皮尔逊相关性 Pearson correlation0.705**0.529**0.580**1
显著性(双尾) Significance (two tailed)000
Table 1 Correlation analysis results between IRT-E, IRT-N, IRT-S and rectal temperature (RT) in dairy cows

红外热成像温度

IRT temperature

最大差值

Maximum difference

最小差值

Minimum difference

平均差值

Average difference

相对标准偏差

Relative standard deviation

IRT-E2.710.331.410.40
IRT-S17.300.409.610.46
IRT-N15.221.025.630.61
Table 2 Comparison of the temperature differences between RT and IRT temperatures
Fig. 5 Box plots of the differences between RT and IRT temperatures1, 2 and 3 show the differences between RT and IRT-E, IRT-S, IRT-N, respectively.

因变量

Dependent

variable

模型参数

Model parameter

自变量

Independent

variable

参数估计

Parameter estimation

R2F

Pa)

P-value a)

回归系数

Coefficient of regression

标准误

Standard error

t

Pb)

P-value b)

IRT-E0.821 2255.7<0.000 1(常数)-8.6104.140-2.080.039 1
RH-0.0010.001-0.860.392 4
AT0.0400.00315.43<0.000 1
RT1.1800.11010.98<0.000 1
IRT-N0.684 9121.0<0.000 1(常数)-139.39028.510-4.89<0.000 1
RH0.0600.0081.740.083 1
AT0.1900.02010.75<0.000 1
RT4.3600.7405.93<0.000 1
IRT-S0.927 7714.7<0.000 1(常数)-68.20017.540-3.890.000 1
RH0.0100.0052.070.040 5
AT0.3500.01032.29<0.000 1
RT2.3800.4505.24<0.000 1
Table 3 Results of multivariate linear regression analysis among ambient temperature, relative humidity, rectal temperature and IRT temperatures
Fig. 6 Regression results of IRT temperatures of eyes, nose, skin to rectal temperature
[1]   BITMAN J, LEFCOURT A, WOOD D L, et al. Circadian and ultradian temperature rhythms of lactating dairy cows. Journal of Dairy Science, 1984,67(5):1014-1023.
[2]   HUANG M, TAMURA T, CHEN W X, et al. Characterization of ultradian and circadian rhythms of core body temperature based on wavelet analysis//International Conference of the IEEE Engineering in Medicine and Biology Society. USA: Chicago, 2014:4220-4223.
[3]   刘嘉莉,窦金焕,胡丽蓉,等.热应激对奶牛生理和免疫功能的影响及其机理.中国畜牧兽医,2018,45(1):263-270. DOI:10.16431/j.cnki.1671-7236.2018.01.034
LIU J L, DOU J H, HU L R, et al. Effects and mechanism of heat stress on physiological and immune system in dariy cows. China Animal Husbandry and Veterinary Medicine, 2018,45(1):263-270. (in Chinese with English abstract)
doi: 10.16431/j.cnki.1671-7236.2018.01.034
[4]   BURFEIND O, SUTHAR V S, HEUWIESER W. Effect of heat stress on body temperature in healthy early postpartum dairy cows. Theriogenology, 2012,78(9):2031-2038. DOI:10.1016/j.theriogenology.2012.07.024
doi: 10
[5]   GLOSTER J, EBERT K, GUBBINS S, et al. Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection. BMC Veterinary Research, 2011,7(1):73. DOI:10.1186/1746-6148-7-73
doi: 10.1186/1746-6148-7-73
[6]   SATHIYABARATHI M, JEYAKUMAR S, MANIMARAN A, et al. Investigation of body and udder skin surface temperature differentials as an early indicator of mastitis in Holstein Friesian crossbred cows using digital infrared thermography technique. Veterinary World, 2016,9(12):1386-1391. DOI:10.14202/vetworld.2016.1386-1391
doi: 10.14202/vetworld.2016.1386-1391
[7]   VOSS B, LAUE H J, HOEDEMAKER M, et al. Field-trial evaluation of an automatic temperature measurement device placed in the reticulo-rumen of pre-weaned male calves. Livestock Science, 2016,189:78-81. DOI:10.1016/j.livsci.2016.05.005
doi: 10.1016/j.livsci.2016
[8]   KYLE B L, KENNEDY A D, SMALL J A. Measurement of vaginal temperature by radiotelemetry for the prediction of estrus in beef cows. Theriogenology, 1998,49(8):1437-1449.
[9]   SAKATANI M, TAKAHASHI M, TAKENOUCHI N. The efficiency of vaginal temperature measurement for detection of estrus in Japanese black cows. Journal of Reproduction and Development, 2016,62(2):201-207. DOI:10.1262/jrd.2015-095
doi: 10.1262/jrd.2015-095
[10]   MORAIS R, VALENTE A, ALMEIDA J C, et al. Concept study of an implantable microsystem for electrical resistance and temperature measurements in dairy cows, suitable for estrus detection. Sensors and Actuators A: Physical, 2006,132(1):354-361. DOI:10.1016/j.sna.2006.04.011
doi: 10.1016/j.sna.2006.04.011
[11]   ALZAHAL O, ALZAHAL H, STEELE M A, et al. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. Journal of Dairy Science, 2011,94(7):3568-3574. DOI:10.3168/jds.2010-3944
doi: 10.3168/jds.2010-3944
[12]   TIMSIT E, ASSIéé S, QUINIOU R, et al. Early detection of bovine respiratory disease in young bulls using reticulo-rumen temperature boluses. Veterinary Journal, 2011,190(1):136-142. DOI:10.1016/j.tvjl.2010.09.012
doi: 10.1016/j.tvjl.2010.09.012
[13]   STEWART M, WEBSTER J R, SCHAEFER A L, et al. Infrared thermography as a non-invasive toot to study animal welfare. Animal Welfare, 2005,14(4):319-325.
[14]   CHURCH J S, HEGADOREN P R, PAETKAU M J, et al. Influence of environmental factors on infrared eye temperature measurements in cattle. Research in Veterinary Science, 2014,96(1):220-226. DOI:10.1016/j.rvsc.2013.11.006
doi: 10.1016/j.rvsc.2013.11.006
[15]   TALUKDER S, THOMSON P C, KERRIS K L, et al. Evaluation of infrared thermography body temperature and collar-mounted accelerometer and acoustic technology for predicting time of ovulation of cows in a pasture-based system. Theriogenology, 2015,83(4):739-748. DOI:10.1016/j.theriogenology.2014.11.005
doi: 10.1016/j.theriogenology.2014.11.005
[16]   MCCAFFERTY D J. The value of infrared thermography for research on mammals: previous applications and future directions. Mammal Review, 2010,37(3):207-223. DOI:10.1111/j.1365-2907.2007.00111.x
doi: 10.1111/j.1365-2907.2007.00111.x
[17]   GEORGE W D, GODFREY R W, KETRING R C, et al. Relationship among eye and muzzle temperatures measured using digital infrared thermal imaging and vaginal and rectal temperatures in hair sheep and cattle. Journal of Animal Science, 2014,92(11):4949-4955. DOI:10.2527/jas.2014-8087
doi: 10.2527/jas.2014-8087
[18]   ALSAAOD M, SYRING C, DIETRICH J, et al. A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows. The Veterinary Journal, 2014,199(2):281-285. DOI:10.1016/j.tvjl.2013.11.028
doi: 10.1016/j.tvjl
[19]   ALSAAOD M, BSCHER W. Detection of hoof lesions using digital infrared thermography in dairy cows. Journal of Dairy Science, 2012,95(2):735-742. DOI:10.3168/jds.2011-4762
doi: 10.3168/jds.2011-4762
[20]   SATHIYABARATHI M, JEYAKUMAR S, MANIMARAN A, et al. Infrared thermography: a potential noninvasive tool to monitor udder health status in dairy cows. Veterinary World, 2016,9(10):1075-1081. DOI:10.14202/vetworld.2016.1075-1081
doi: 10.14202/vetworld.2016.1075-1081
[21]   ZANINELLI M, REDAELLI V, LUZI F, et al. First evaluation of infrared thermography as a tool for the monitoring of udder health status in farms of dairy cows. Sensors, 2018,18(3):862. DOI:10.3390/s18030862
doi: 10.3390/s18030862
[22]   STEWART M, WEBSTER J R, VERKERK G A, et al. Non-invasive measurement of stress in dairy cows using infrared thermography. Physiology and Behavior, 2007,92(3):520-525. DOI:10.1016/j.physbeh.2007.04.034
doi: 10.1016/j.physbeh.2007.04.034
[23]   VALERA M, BARTOLOMéé E, SáNCHEZ M J, et al. Changes in eye temperature and stress assessment in horses during show jumping competitions. Journal of Equine Veterinary Science, 2012,32(12):827-830. DOI:10.1016/j.jevs.2012.03.005
doi: 10.1016/j.jevs
[24]   COOK N J, SCHAEFER A L, WARREN L, et al. Adrenocortical and metabolic responses to ACTH injection in horses: an assessment by salivary cortisol and infrared thermography of the eye. Canadian Society of Animal Science, 2001,81:621.
[25]   STEWART M, SCHAEFER A L, HALEY D B, et al. Infrared thermography as a non-invasive method for detecting fear-related responses of cattle to handling procedures. Animal Welfare, 2008,17(4):387-393. DOI:10.1017/S1751731108002826
doi: 10.1017/S175173110800
[26]   DAI F, COGI N H, HEINZL E U L, et al. Validation of a fear test in sport horses using infrared thermography. Journal of Veterinary Behavior Clinical Applications and Research, 2015,10(2):128-136. DOI:10.1016/j.jveb.2014.12.001
doi: 10.1016/j.jveb.2014.12
[27]   SCHWARTZKOPF G K, FIERHELLER E E, CAULKETT N A, et al. Achieving pain control for routine management procedures in North American beef cattle. Animal Frontiers, 2012(2):52-58. DOI:10.2527/af.2012-0049
doi: 10.2527/af.2012-0049
[28]   MCLEAN J A, STOMBAUGH D P, DOWNIE A J, et al. Thermal adjustments of steers (Bos taurus) to abrupt changes in environmental temperature. The Journal of Agricultural Science, 1983,100(2):305-314.
[29]   KASTELIC J P, COOK R B, COULTER G H, et al. Environmental factors affecting measurement of bovine scrotal surface temperature with infrared thermography. Animal Reproduction Science, 1996,41(3):153-159.
[30]   JOHNSON S R, RAO S, HUSSEY S B, et al. Thermographic eye temperature as an index to body temperature in ponies. Journal of Equine Veterinary Science, 2011,31(2):63-66. DOI:10.1016/j.jevs.2010.12.004
doi: 10.1016/j.jevs.2010.12.004
[31]   SCHAEFER A L, COOK N J, BENCH C, et al. The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Research in Veterinary Science, 2012,93(2):928-935. DOI:10.1016/j.rvsc.2011.09.021
doi: 10.1016/j.rvsc.2011.09.021
[32]   METZNER M, SAUTER-LOUIS C, SEEMUELLER A, et al. Infrared thermography of the udder surface of dairy cattle: characteristics, methods, and correlation with rectal temperature. Veterinary Journal, 2014,199(1):57-62. DOI:10.1016/j.tvjl.2013.10.030
doi: 10
[33]   MCLEAN J A, STOMBAUGH D P, DOWNIE A J, et al. Body heat storage in steers (Bos taurus) in fluctuating thermal environments. The Journal of Agricultural Science, 1983,100(2):315-322.
[1] Zhihong TANG,Ningning XU,Jun’an YE. Effect of compound probiotics and yeast culture on milk production, rumen fermentation and serum anti-stress parameters of heat-stressed dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 611-618.
[2] LI Yongxin, ZOU Yixuan, LIU Jianxin, LIU Hongyun. Progress on oxidative stress and natural phytogenic antioxidants in dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 549-554.