Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 618-632    DOI: 10.3785/j.issn.1008-9209.2022.08.051
Young Scientist Forum     
Research advances on pathogenic nucleic acid detection technology based on CRIPSR/Cas system
Hongzhao LI1,2(),Hao WANG2(),Rui YIN2,Min YUE1,2,Yan LI1,2
1.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
2.Institute of Preventive Veterinary Sciences/Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(4481KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) system, an ancient bacterial and archaeal immune system, has rapidly developed into a popular gene-editing tool, which largely promotes the development of several biology-related fields. By combining the CRISPR/Cas systems with the isothermal amplification techniques, the novel and effective detection methods with high sensitivity and independence of equipment have been established, such as DNA endonuclease-targeted CRISPR trans-reporter (DETECTR) and specific high-sensitivity enzymatic reporter unlocking (SHERLOCK). These new technologies not only improve the performance of the CRISPR/Cas system in different situations, but also inspire its application potential in the on-site detection. In this review, we summarized the nucleic acid detection methods developed on the three widely-used CRISPR/Cas systems (CRISPR/Cas9, CRISPR/Cas12a, and CRISPR/Cas13), and elucidated their biological significance and the principles of action. We also reviewed the recent studies on the applications of CRISPR/Cas systems in pathogen detection, and analyzed the characteristics and possible defects of different detection systems in practical applications. This review aims to provide more constructive advice on developing adaptable and efficient CRISPR/Cas-based detection methods for different pathogens in various practical scenarios.



Key wordsCRISPR/Cas system      Cas protein      pathogen      nucleic acid      detection method     
Received: 05 August 2022      Published: 03 November 2023
CLC:  S85  
Corresponding Authors: Yan LI     E-mail: 22017116@zju.edu.cn;11917042@zju.edu.cn
Cite this article:

Hongzhao LI,Hao WANG,Rui YIN,Min YUE,Yan LI. Research advances on pathogenic nucleic acid detection technology based on CRIPSR/Cas system. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 618-632.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.08.051     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/618


基于CRISPR/Cas系统的病原核酸检测技术研究进展

作为一种古老的细菌和古菌免疫系统,规律成簇的间隔短回文重复序列及其相关蛋白[clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), CRISPR/Cas]系统现已发展为新兴的热门基因编辑工具,极大地推动了其他多个生物学相关领域的发展。其中,通过结合CRISPR/Cas系统与核酸恒温扩增技术建立了一些新型的高效、灵敏、不依赖仪器设备的检测方法,如DNA内切酶靶向的CRISPR反式报告系统(DNA endonuclease-targeted CRISPR trans-reporter, DETECTR)、特异性高灵敏度的酶报告器系统(specific high-sensitivity enzymatic reporter unlocking, SHERLOCK)等,不但提高了CRISPR/Cas系统在不同应用场景下的检测性能,更进一步激发了其在现场检测中的应用潜力。本文基于近年来被广泛应用的3种CRISPR/Cas系统(CRISPR/Cas9、CRISPR/Cas12a以及CRISPR/Cas13)的生物核酸检测方法,阐述了CRISPR/Cas系统的生物学意义及一般作用原理,并通过回顾以往开展的CRISPR/Cas系统相关的病原检测研究,比较分析了不同检测系统的特点以及在实际应用过程中可能存在的不足,为针对不同病原在不同应用场景下建立更加高效、合理的CRISPR/Cas系统检测方法提供了有益参考。


关键词: CRISPR/Cas系统,  Cas蛋白,  病原,  核酸,  检测方法 
Fig. 1 Classification of class 2 CRISPR/Cas systemREC: Recognition lobe; PI: PAM-interacting domain; HEPN: Higher eukaryotes and prokaryotes nucleotide-binding domain; TM: Trans-membrane domain.
Fig. 2 Specific recognition and cleavage of target nucleic acid by Cas9, Cas12a, and Cas13a and non-specific cleavage of single-stranded DNA/RNA by Cas12a and Cas13a
Fig. 3 Amplification principles of RPA and HDA technologies
Fig. 4 Amplification principle of LAMP techniqueA-B. Cyclic template synthesis stages; C. Cyclic amplification and recycling stages.

Cas蛋白

Cas protein

病原类型

Type of pathogen

检测方法

Detection method

病原

Pathogen

靶基因

Target gene

检测限

Limit of

detection

Cas9单股正链RNA病毒NASBACC[42]寨卡病毒lacZ600拷贝
dCas9细菌PC报告系统[52]结核分枝杆菌16S rRNA1拷贝
LbCas12a单股正链RNA病毒RT-RPA-Cas12a[53]猪繁殖与呼吸综合征病毒nsp210拷贝
LbCas12a单股正链RNA病毒AIOD-CRISPR[54]新型冠状病毒Nucleocapsid protein3拷贝
LbCas12a单股正链RNA病毒sPAMC[47]新型冠状病毒Nucleocapsid protein2.4拷贝
LbCas12a单股负链RNA病毒RT-RPA-Cas12a[55]埃博拉病毒VP306.6拷贝
LwCas13a单股负链RNA病毒RT-RPA-Cas13a[56]H7N9禽流感病毒HemagglutininHeuraminidase1 nmol/L
LwCas13a单股正链RNA病毒Cas13a[57]牛病毒性腹泻病毒1×103 pmol/L
LwCas13a单股正链RNA病毒SHINE[58]新型冠状病毒ORF1a5拷贝
LbuCas13a单股正链RNA病毒免扩增检测系统[59]新型冠状病毒Nucleocapsid protein100拷贝
LwCas13a单股正链RNA病毒SHERLOCK[22]寨卡病毒、登革热病毒2.1拷贝
LwCas13a单股正链RNA病毒RT-RPA-Cas13a[60]猪繁殖与呼吸综合征病毒Membrane protein172拷贝
LbuCas13a单股正链RNA病毒RT-RPA-Cas13a[61]新型冠状病毒Nucleocapsid protein8拷贝
Table 1 Applications of CRISPR/Cas system in the detection of RNA pathogens

Cas蛋白

Cas protein

病原类型

Type of pathogen

检测方法

Detection method

病原

Pathogen

靶基因

Target gene

检测限

Limit of detection

Cas9细菌CAS-EXPAR[62]单增李斯特菌hly0.82 amol每反应体系
Cas9细菌Cas9nAR[63]

大肠埃希菌

鼠伤寒沙门菌

uidA

invA

基因组100拷贝,菌

液100 CFU每反应

体系

Cas9双链DNA病毒CASLFA[64]非洲猪瘟病毒p72200拷贝
dCas9双链DNA病毒CRISPR介导的DNA-FISH[65]

耐甲氧西林金黄色葡萄

球菌

mecA10 CFU/mL
LbCas12a细菌PCR-Cas12a[66]金黄色葡萄球菌femA1×103 CFU/mL
LbCas12a双链DNA病毒CORDS[67]非洲猪瘟病毒P721×1015 mol/L
LbCas12a单股负链DNA病毒ERA-Cas12a[68]猪圆环病毒3型Rep7拷贝
LbCas12a双链DNA病毒RPA-Cas12a[69]鳞片脱落疾病病毒ATPase40拷贝
LbCas12a细菌LAMP-Cas12a[70]副溶血性弧菌tlh30拷贝
AsCas12a双链DNA病毒基于Cas12a的比色检测法[71]非洲猪瘟病毒P72

肉眼可见,最低200

拷贝

LbCas12a双链DNA病毒DETECTR[45]

人乳头状瘤病毒16型、

人乳头状瘤病毒18型

L110拷贝
LwCas13a单股负链DNA病毒RT-RPA-Cas13a[72]犬细小病毒2型1×102 amol/L
LbuCas13a细菌APC-Cas[73]肠炎沙门菌sefA1 CFU每反应体系
LwCas13a细菌CCB检测法[74]金黄色葡萄球菌nuc1 amol/L
LbuCas13a细菌

发光RNA适体信号传导-CRISPR-

Cas13a的混合读取检测法[75]

蜡样芽孢杆菌16S rRNA10 CFU每反应体系
Table 2 Applications of CRISPR/Cas system in the detection of DNA pathogens
Fig. 5 Operating procedures based on CRISPR/Cas12a and CRISPR/Cas13a detection systems
[1]   MARTZY R, KOLM C, KRSKA R, et al. Challenges and perspectives in the application of isothermal DNA amplifi-cation methods for food and water analysis[J]. Analytical and Bioanalytical Chemistry, 2019, 411(9): 1695-1702. DOI: 10.1007/s00216-018-1553-1
doi: 10.1007/s00216-018-1553-1
[2]   RATH D, AMLINGER L, RATH A, et al. The CRISPR-Cas immune system: biology, mechanisms and applications[J]. Biochimie, 2015, 117: 119-128. DOI: 10.1016/j.biochi.2015.03.025
doi: 10.1016/j.biochi.2015.03.025
[3]   MAKAROVA K S, WOLF Y I, KOONIN E V. Comparative genomics of defense systems in archaea and bacteria[J]. Nucleic Acids Research, 2013, 41(8): 4360-4377. DOI: 10.1093/nar/gkt157
doi: 10.1093/nar/gkt157
[4]   GILBERT L A, LARSON M H, MORSUT L, et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. DOI: 10.1016/j.cell.2013.06.044
doi: 10.1016/j.cell.2013.06.044
[5]   AGARWAL N, History GUPTA R., evolution and classification of CRISPR-Cas associated systems[J]. Progress in Molecular Biology and Translational Science, 2021, 179: 11-76. DOI: 10.1016/bs.pmbts.2020.12.012
doi: 10.1016/bs.pmbts.2020.12.012
[6]   NAJAH S, SAULNIER C, PERNODET J L, et al. Design of a generic CRISPR-Cas9 approach using the same sgRNA to perform gene editing at distinct loci[J]. BMC Biotechnology, 2019, 19: 18. DOI: 10.1186/s12896-019-0509-7
doi: 10.1186/s12896-019-0509-7
[7]   BAO A L, BURRITT D J, CHEN H F, et al. The CRISPR/Cas9 system and its applications in crop genome editing[J]. Critical Reviews in Biotechnology, 2019, 39(3): 321-336. DOI: 10.1080/07388551.2018.1554621
doi: 10.1080/07388551.2018.1554621
[8]   GASIUNAS G, BARRANGOU R, HORVATH P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. PNAS, 2012, 109(39): E2579-E2586. DOI: 10.1073/pnas.1208507109
doi: 10.1073/pnas.1208507109
[9]   WATTERS K E, FELLMANN C, BAI H B, et al. Systematic discovery of natural CRISPR-Cas12a inhibitors[J]. Science, 2018, 362(6411): 236-239. DOI: 10.1126/science.aau5138
doi: 10.1126/science.aau5138
[10]   MAKAROVA K S, KOONIN E V. Annotation and Classifi-cation of CRISPR-Cas systems[M]//LUNDGREN M, CHARPENTIER E, FINERAN P C. CRISPR. Methods in Molecular Biology. Vol. 1311. New York: Humana Press, 2015: 47-75. DOI: 10.1007/978-1-4939-2687-9_4
doi: 10.1007/978-1-4939-2687-9_4
[11]   CHEN P, ZHOU J, WAN Y B, et al. A Cas12a ortholog with stringent PAM recognition followed by low off-target editing rates for genome editing[J]. Genome Biology, 2020, 21: 78. DOI: 10.1186/s13059-020-01989-2
doi: 10.1186/s13059-020-01989-2
[12]   ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. DOI: 10.1016/j.cell.2015.09.038
doi: 10.1016/j.cell.2015.09.038
[13]   JIANG Y, QIAN F H, YANG J J, et al. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum [J]. Nature Communications, 2017, 8: 15179. DOI: 10.1038/ncomms15179
doi: 10.1038/ncomms15179
[14]   DONG D, REN K, QIU X L, et al. The crystal structure of Cpf1 in complex with CRISPR RNA[J]. Nature, 2016, 532(7600): 522-526. DOI: 10.1038/nature17944
doi: 10.1038/nature17944
[15]   BANAKAR R, SCHUBERT M, COLLINGWOOD M, et al. Comparison of CRISPR-Cas9/Cas12a ribonucleoprotein complexes for genome editing efficiency in the rice phytoene desaturase (OsPDS)gene[J]. Rice, 2020, 13: 4. DOI: 10.1186/s12284-019-0365-z
doi: 10.1186/s12284-019-0365-z
[16]   YAMANO T, NISHIMASU H, ZETSCHE B, et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA[J]. Cell, 2016, 165(4): 949-962. DOI: 10.1016/j.cell.2016.04.003
doi: 10.1016/j.cell.2016.04.003
[17]   MAULE G, CASINI A, MONTAGNA C, et al. Allele specific repair of splicing mutations in cystic fibrosis through AsCas12a genome editing[J]. Nature Communications, 2019, 10: 3556. DOI: 10.1038/s41467-019-11454-9
doi: 10.1038/s41467-019-11454-9
[18]   KIM D, KIM J, HUR J K, et al. Erratum: genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nature Biotechnology, 2016, 34(8): 888. DOI: 10.1038/nbt0816-888a
doi: 10.1038/nbt0816-888a
[19]   SWARTS D C, JINEK M. Cas9 versus Cas12a/Cpf1: structure-function comparisons and implications for genome editing[J]. Wiley Interdisciplinary Reviews. RNA, 2018, 9(5): e1481. DOI: 10.1002/wrna.1481
doi: 10.1002/wrna.1481
[20]   SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Molecular Cell, 2015, 60(3): 385-397. DOI: 10.1016/j.molcel.2015.10.008
doi: 10.1016/j.molcel.2015.10.008
[21]   LIU L, LI X Y, MA J, et al. The molecular architecture for RNA-guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714-726.e10. DOI: 10.1016/j.cell.2017.06.050
doi: 10.1016/j.cell.2017.06.050
[22]   GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. DOI: 10.1126/science.aam9321
doi: 10.1126/science.aam9321
[23]   KELLNER M J, KOOB J G, GOOTENBERG J S, et al. SHERLOCK: nucleic acid detection with CRISPR nucleases[J]. Nature Protocols, 2019, 14(10): 2986-3012. DOI: 10.1038/s41596-019-0210-2
doi: 10.1038/s41596-019-0210-2
[24]   SMARGON A A, COX D B T, PYZOCHA N K, et al. Cas13b is a type Ⅵ-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Molecular Cell, 2017, 65(4): 618-630. DOI: 10.1016/j.molcel.2016.12.023
doi: 10.1016/j.molcel.2016.12.023
[25]   COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366): 1019-1027. DOI: 10.1126/science.aaq0180
doi: 10.1126/science.aaq0180
[26]   KONERMANN S, LOTFY P, BRIDEAU N J, et al. Trans-criptome engineering with RNA-targeting type Ⅵ-D CRISPR effectors[J]. Cell, 2018, 173(3): 665-676. DOI: 10.1016/j.cell.2018.02.033
doi: 10.1016/j.cell.2018.02.033
[27]   ZHANG B, YE Y M, YE W W, et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d[J]. Nature Communications, 2019, 10: 2544. DOI: 10.1038/s41467-019-10507-3
doi: 10.1038/s41467-019-10507-3
[28]   ZHOU H B, SU J L, HU X D, et al. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice[J]. Cell, 2020, 181(3): 590-603. DOI: 10.1016/j.cell.2020.03.024
doi: 10.1016/j.cell.2020.03.024
[29]   BROGAN D J, CHAVERRA-RODRIGUEZ D, LIN C P, et al. Development of a rapid and sensitive casrx-based diagnostic assay for SARS-CoV-2[J]. ACS Sensors, 2021, 6(11): 3957-3966. DOI: 10.1021/acssensors.1c01088
doi: 10.1021/acssensors.1c01088
[30]   SAIKI R K, GELFAND D H, STOFFEL S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase[J]. Science, 1988, 239(4839): 487-491.
[31]   HEID C A, STEVENS J, LIVAK K J, et al. Real time quantitative PCR[J]. Genome Research, 1996, 6(10): 986-994.
[32]   VOGELSTEIN B, KINZLER K W. Digital PCR[J]. PNAS, 1999, 96(16): 9236-9241.
[33]   WANG Q, ZHANG B B, XU X H, et al. CRISPR-typing PCR (ctPCR), a new Cas9-based DNA detection method[J]. Scientific Reports, 2018, 8: 14126. DOI: 10.1038/s41598-018-32329-x
doi: 10.1038/s41598-018-32329-x
[34]   ZHANG B B, WANG Q, XU X H, et al. Detection of target DNA with a novel Cas9/sgRNAs-associated reverse PCR (CARP) technique[J]. Analytical and Bioanalytical Chemistry, 2018, 410(12): 2889-2900. DOI: 10.1007/s00216-018-0873-5
doi: 10.1007/s00216-018-0873-5
[35]   ZHANG B B, XIA Q, WANG Q, et al. Detecting and typing target DNA with a novel CRISPR-typing PCR (ctPCR) technique[J]. Analytical Biochemistry, 2018, 561/562: 37-46. DOI: 10.1016/j.ab.2018.09.012
doi: 10.1016/j.ab.2018.09.012
[36]   GAO J L, WU L, YANG D D, et al. A one-pot CRISPR/Cas9-typing PCR for DNA detection and genotyping[J]. The Journal of Molecular Diagnostics, 2021, 23(1): 46-60. DOI: 10.1016/j.jmoldx.2020.10.004
doi: 10.1016/j.jmoldx.2020.10.004
[37]   PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. PLoS Biology, 2006, 4(7): e204. DOI: 10.1371/journal.pbio.0040204
doi: 10.1371/journal.pbio.0040204
[38]   XU Y, KIM H J, KAYS A, et al. Simultaneous amplification and screening of whole plasmids using the T7 bacteriophage replisome[J]. Nucleic Acids Research, 2006, 34(13): e98. DOI: 10.1093/nar/gkl547
doi: 10.1093/nar/gkl547
[39]   VINCENT M, XU Y, KONG H M. Helicase-dependent isothermal DNA amplification[J]. Scientific Report, 2004, 5(8): 795-800. DOI: 10.1038/sj.embor.7400200
doi: 10.1038/sj.embor.7400200
[40]   GOLDMEYER J, KONG H M, TANG W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection[J]. The Journal of Molecular Diagnostics, 2007, 9(5): 639-644. DOI: 10.2353/jmoldx.2007.070012
doi: 10.2353/jmoldx.2007.070012
[41]   NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12): e63. DOI: 10.1093/nar/28.12.e63
doi: 10.1093/nar/28.12.e63
[42]   PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of Zika virus using programmable bio-molecular components[J]. Cell, 2016, 165(5): 1255-1266. DOI: 10.1016/j.cell.2016.04.059
doi: 10.1016/j.cell.2016.04.059
[43]   ZHOU W H, HU L, YING L M, et al. A CRISPR-Cas9-triggered strand displacement amplification method for ultra-sensitive DNA detection[J]. Nature Communications, 2018, 9: 5012. DOI: 10.1038/s41467-018-07324-5
doi: 10.1038/s41467-018-07324-5
[44]   ZHANG Y H, QIAN L, WEI W J, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. ACS Synthetic Biology, 2017, 6(2): 211-216. DOI: 10.1021/acssynbio.6b00215
doi: 10.1021/acssynbio.6b00215
[45]   CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. DOI: 10.1126/science.aar6245
doi: 10.1126/science.aar6245
[46]   LI Y Y, MANSOUR H, WANG T, et al. Naked-eye detection of grapevine red-blotch viral infection using a plasmonic CRISPR Cas12a assay[J]. Analytical Chemistry, 2019, 91(18): 11510-11513. DOI: 10.1021/acs.analchem.9b03545
doi: 10.1021/acs.analchem.9b03545
[47]   LU S H, TONG X H, HAN Y, et al. Fast and sensitive detection of SARS-CoV-2 RNA using suboptimal protospacer adjacent motifs for Cas12a[J]. Nature Biomedical Engineering, 2022, 6(3): 286-297. DOI: 10.1038/s41551-022-00861-x
doi: 10.1038/s41551-022-00861-x
[48]   ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. DOI: 10.1126/science.aaf5573
doi: 10.1126/science.aaf5573
[49]   EAST-SELETSKY A, O’CONNELL M R, KNIGHT S C, et al. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624): 270-273. DOI: 10.1038/nature19802
doi: 10.1038/nature19802
[50]   GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444. DOI: 10.1126/science.aaq0179
doi: 10.1126/science.aaq0179
[51]   MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387): 444-448. DOI: 10.1126/science.aas8836
doi: 10.1126/science.aas8836
[52]   ZHANG Y H, WANG Y, XU L Z, et al. Paired dCas9 design as a nucleic acid detection platform for pathogenic strains[J]. Methods, 2022, 203: 70-77. DOI: 10.1016/j.ymeth.2021.06.003
doi: 10.1016/j.ymeth.2021.06.003
[53]   LIU S Y, TAO D G, LIAO Y Y, et al. Highly sensitive CRISPR/Cas12a-based fluorescence detection of porcine reproductive and respiratory syndrome virus[J]. ACS Synthetic Biology, 2021, 10(10): 2499-2507. DOI: 10.1021/acssynbio.1c00103
doi: 10.1021/acssynbio.1c00103
[54]   DING X, YIN K, LI Z Y, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J]. Nature Communications, 2020, 11: 4711. DOI: 10.1038/s41467-020-18575-6
doi: 10.1038/s41467-020-18575-6
[55]   ENGLISH M A, SOENKSEN L R, GAYET R V, et al. Programmable CRISPR-responsive smart materials[J]. Science, 2019, 365(6455): 780-785. DOI: 10.1126/science.aaw5122
doi: 10.1126/science.aaw5122
[56]   LIU Y F, XU H P, LIU C, et al. CRISPR-Cas13a nano-machine based simple technology for avian influenza A (H7N9) virus on-site detection[J]. Journal of Biomedical Nanotech-nology, 2019, 15(4): 790-798. DOI: 10.1166/jbn.2019.2742
doi: 10.1166/jbn.2019.2742
[57]   YAO R, XU Y R, WANG L, et al. CRISPR-Cas13a-based detection for bovine viral diarrhea virus[J]. Frontiers in Veterinary Science, 2021, 8: 603919. DOI: 10.3389/fvets.2021.603919
doi: 10.3389/fvets.2021.603919
[58]   ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Stream-lined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nature Communications, 2020, 11: 5921. DOI: 10.1038/s41467-020-19097-x
doi: 10.1038/s41467-020-19097-x
[59]   FOZOUNI P, SON S, DE LEÓN DERBY M D, et al. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy[J]. Cell, 2021, 184(2): 323-333. e9. DOI: 10.1016/j.cell.2020.12.001
doi: 10.1016/j.cell.2020.12.001
[60]   CHANG Y F, DENG Y, LI T Y, et al. Visual detection of porcine reproductive and respiratory syndrome virus using CRISPR-Cas13a[J]. Transboundary and Emerging Diseases, 2020, 67(2): 564-571. DOI: 10.1111/tbed.13368
doi: 10.1111/tbed.13368
[61]   TIAN T, QIU Z Q, JIANG Y Z, et al. Exploiting the orthogonal CRISPR-Cas12a/Cas13a trans-cleavage for dual-gene virus detection using a handheld device[J]. Biosensors & Bioelectronics, 2022, 196: 113701. DOI: 10.1016/j.bios.2021.113701
doi: 10.1016/j.bios.2021.113701
[62]   HUANG M Q, ZHOU X M, WANG H Y, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Analytical Chemistry, 2018, 90(3): 2193-2200. DOI: 10.1021/acs.analchem.7b04542
doi: 10.1021/acs.analchem.7b04542
[63]   WANG L Y, SHEN X Y, WANG T, et al. A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection[J]. Biosensors & Bioelectronics, 2020, 165: 112364. DOI: 10.1016/j.bios.2020.112364
doi: 10.1016/j.bios.2020.112364
[64]   WANG X S, XIONG E H, TIAN T, et al. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay[J]. ACS Nano, 2020, 14(2): 2497-2508. DOI: 10.1021/acsnano.0c00022
doi: 10.1021/acsnano.0c00022
[65]   GUK K, KEEM J O, HWANG S G, et al. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex[J]. Biosensors & Bioelectronics, 2017, 95: 67-71. DOI: 10.1016/j.bios.2017.04.016
doi: 10.1016/j.bios.2017.04.016
[66]   PENG L, ZHOU J, YIN L J, et al. Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes[J]. Analytica Chimica Acta, 2020, 1125: 162-168. DOI: 10.1016/j.aca.2020.05.017
doi: 10.1016/j.aca.2020.05.017
[67]   BAI J, LIN H S, LI H J, et al. Cas12a-based on-site and rapid nucleic acid detection of African swine fever[J]. Frontiers in Microbiology, 2019, 10: 2830. DOI: 10.3389/fmicb.2019.02830
doi: 10.3389/fmicb.2019.02830
[68]   ZHANG W Y, XU L, LIU Q, et al. Enzymatic recombinase amplification coupled with CRISPR-Cas12a for ultrasensitive, rapid, and specific Porcine circovirus 3 detection[J]. Molecular and Cellular Probes, 2021, 59: 101763. DOI: 10.1016/j.mcp.2021.101763
doi: 10.1016/j.mcp.2021.101763
[69]   SUKONTA T, SENAPIN S, MEEMETTA W, et al. CRISPR-based platform for rapid, sensitive and field-deployable detection of scale drop disease virus in Asian sea bass (Lates calcarifer)[J]. Journal of Fish Diseases, 2022, 45(1): 107-120. DOI: 10.1111/jfd.13541
doi: 10.1111/jfd.13541
[70]   WU H, CHEN Y J, YANG Q Q, et al. A reversible valve-assisted chip coupling with integrated sample treatment and CRISPR/Cas12a for visual detection of Vibrio parahaemoly-ticus [J]. Biosensors & Bioelectronics, 2021, 188: 113352. DOI: 10.1016/j.bios.2021.113352
doi: 10.1016/j.bios.2021.113352
[71]   YUAN C Q, TIAN T, SUN J, et al. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system[J]. Analytical Chemistry, 2020, 92(5): 4029-4037. DOI: 10.1021/acs.analchem.9b05597
doi: 10.1021/acs.analchem.9b05597
[72]   KHAN H, KHAN A, LIU Y F, et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus type 2[J]. Chinese Chemical Letters, 2019, 30(12): 2201-2204. DOI: 10.1016/j.cclet.2019.10.032
doi: 10.1016/j.cclet.2019.10.032
[73]   SHEN J J, ZHOU X M, SHAN Y Y, et al. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction[J]. Nature Communications, 2020, 11: 267. DOI: 10.1038/s41467-019-14135-9
doi: 10.1038/s41467-019-14135-9
[74]   ZHOU J, YIN L J, DONG Y N, et al. CRISPR-Cas13a based bacterial detection platform: sensing pathogen Staphylococcus aureus in food samples[J]. Analytica Chimica Acta, 2020, 1127: 225-233. DOI: 10.1016/j.aca.2020.06.041
doi: 10.1016/j.aca.2020.06.041
[75]   ZHANG T, ZHOU W H, LIN X Y, et al. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria[J]. Biosensors & Bioelectronics, 2021, 176: 112906. DOI: 10.1016/j.bios.2020.112906
李艳,浙江大学动物科学学院“百人计划”研究员,博士生导师。中国科学院武汉病毒研究所和美国纽约州卫生部Wadsworth中心联合培养博士,2010年获理学博士学位。2011年起师从美国科学院院士Nancy Speck教授进行博士后研究。2017年10月加盟浙江大学动物科学学院动物医学系,研究方向为兽医病理与比较生物医学。近年来在SCI收录期刊共发表论文30余篇,其中在Blood、Genes & Development等期刊以第一作者或者通信作者发表论文17篇。作为主要完成人之一获得2018年国家自然科学奖二等奖。主持国家重点研发计划政府间国际科技创新合作项目、国家自然科学基金面上项目和青年项目、浙江省自然科学基金重点项目、海南省自然科学基金面上项目和海南省科技计划三亚崖州湾科技城联合项目。
doi: 10.1016/j.bios.2020.112906
[1] Ruifang JIA,Liru KANG,Yuanzheng ZHAO,Le AN,Zhiwei ZHANG,Jun ZHAO,Limin XU,Jian ZHANG. Isolation, identification and their biological characteristics of pathogens of potato Fusarium wilt in Yinshan area, Inner Mongolia[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 65-75.
[2] Xuanjun LU,Zhenzhu SU,Xiaohong LIU,Fucheng LIN. Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 721-730.
[3] Xi FANG,Youping XU,Xinzhong CAI. Research progress of fire blight in fruit trees[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 731-743.
[4] Yong CHEN,Weijian JIANG,Jiajun WANG,Fan ZHANG,Lirong SHEN. Quantitative detection of major royal jelly proteins 1-3 by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 776-786.
[5] Ting XIE,Jinyan LUO,Lei CHEN,Wei DU,Jie ZHU,Bin LI. Comparison of control methods of cucumber green mottle mosaic virus disease and their prospects[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 279-288.
[6] Deqian WANG,Minjie HUANG,Haikun GUO,Mengge FANG,Junzhu LI,Jie DONG. Investigation on the infection of Chinese sacbrood virus and Melissococcus pluton in Chinese honeybee (Apis cerana cerana) of Chun’an County of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 389-394.
[7] Fengli WANG,Jiying QIU,Meixue DAI,Leilei CHEN,Shuangzhi ZHAO,Xue XIN,Qingxin ZHOU. Isolation, identification and pathogenicity study of pathogens during postharvest storage of sweet cherries[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 126-134.
[8] WU Shan, LI Ke, FANG Yun, LOU Chengjie, YU Huizhen, ZHANG Mingzhe, SHUAI Jiangbing, ZHANG Xiaofeng. Simultaneous detection of Listeria monocytogenes and pathogenic Vibrio by dual peptide nucleic acid fluorescence in situ hybridization[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 659-666.
[9] Lü Jingwen, LIU Rui, LI Guohua, LI Hongye, WANG Hongkai. Identification of pathogens causing fruit spot disease on Citrus grandis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 687-694.
[10] PAN Hang, LI Xiaoliang, FANG Weihuan, YUE Min.
Analysis of major human and foodborne pathogens and their resistance to antimicrobials in the USA in the past two decades: Implications for surveillance and control of antimicrobial resistance in China
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(2): 237-246.
[11] ZHANG Yuanyuan, ZHANG Gui, ZHANG Jian, ZHANG Guang, ZHOU Hongyou, ZHAO Jun(. Cross pathogenicity of Verticillium spp. isolated from different hosts[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(4): 483-492.
[12] LU Haiyan, XU Chongxin, ZHANG Xiao, LIANG Ying, LIU Xianjin. Antibacterial effect of limonene on food-borne pathogens[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 306-312.
[13] Lu Lianming, Cheng Baoping, Du Danchao, Hu Xiurong, Pu Zhanxu, Chen Guoqing. Genetic diversity of Lecanicillium lecanii and its pathogenicity against Diaphorina citri[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 34-43.
[14] Li Yang1, Zhao Yuan1, Xu Youping2, Wang Jipeng1, Cai Xinzhong1*. Effect of oxalic acid on Ca2+ concentration and signaling pathways in plants.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 141-145.
[15] Li Shujiang1, Zhu Tianhui1*, Zhang Xinghua1,2. Pathogenicity of bacterium carried by Bursaphelenchus mucronatus on Pinus yunnanensis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 146-154.