Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 721-730    DOI: 10.3785/j.issn.1008-9209.2022.07.012
Reviews     
Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy
Xuanjun LU1(),Zhenzhu SU1,Xiaohong LIU1,Fucheng LIN1,2()
1.State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Download: HTML   HTML (   PDF(2645KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Rice blast caused by Magnaporthe oryzae is a worldwide disease, which seriously affects the global rice production. The rapid variation of M. oryzae resulted in a decline in resistant variety screening and pesticide control. Therefore, revealing the pathogenic mechanism of M. oryzae at the molecular level can provide target molecules for rice disease control and new fungicide development. The utilization of endophytic fungi from wild rice to control rice blast provides a new idea for green management. By excavating the resources of wild rice endophytic fungi, identifying functional strains with the activities of promoting growth, immune induction and resistance to adverse conditions, and exploring the interaction mechanism between rice and endophytic fungi, it provides a basic theory for the development of endophytic fungi as new biocontrol agents. This review mainly summarized the novel research results on the pathogenic mechanism of M. oryzae and the functional mechanism of endophytic fungi in rice in recent years, and look forward to the future development direction of a new green prevention and control strategy for M. oryzae.



Key wordsMagnaporthe oryzae      pathogenic mechanism      endophytic fungi      biocontrol     
Received: 01 July 2022      Published: 27 December 2022
CLC:  S 435.111.1  
Corresponding Authors: Fucheng LIN     E-mail: luxuanjun595@163.com;fuchenglin@zju.edu.cn
Cite this article:

Xuanjun LU,Zhenzhu SU,Xiaohong LIU,Fucheng LIN. Review on pathogenic mechanism of Magnaporthe oryzae and new green prevention and control strategy. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 721-730.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.07.012     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/721


稻瘟病菌致病机制及绿色防控新策略

由稻瘟病菌引起的稻瘟病是一种世界性病害,严重影响全球水稻生产。稻瘟病菌变异迅速,导致品种抗病和农药防治效果下降。因此,从分子层面揭示稻瘟病菌的致病机制,可以为水稻病害防治和新药开发提供靶位分子。利用野生稻内生真菌防治稻瘟病为水稻病害的绿色防控提供了新思路。探索野生稻内生真菌资源,挖掘具有促进生长、免疫诱抗和抗逆适应等功能的菌株,探明水稻与内生真菌的互作机制,为开发新型内生真菌生防制剂提供了基础理论。本综述重点总结了近年来稻瘟病菌致病机制新进展以及水稻内生真菌作用机制的最新研究成果,并对稻瘟病绿色防控新策略的未来发展方向进行了展望。


关键词: 稻瘟病菌,  致病机制,  内生真菌,  生物防控 
Fig. 1 Autophagy pattern of Magnaporthe oryzae
Fig. 2 Comparisons of interaction models between F. oryzae, M. oryzae and rice
[1]   MARROQUIN-GUZMAN M, SUN G C, WILSON R A. Glucose-ABL1-TOR signaling modulates cell cycle tuning to control terminal appressorial cell differentiation[J]. PLoS Genetics, 2017, 13(1): e1006557. DOI:10.1371/journal.pgen.1006557
doi: 10.1371/journal.pgen.1006557
[2]   HOWARD R J, FERRARI M A, ROACH D H, et al. Penetration of hard substrates by a fungus employing enormous turgor pressures[J]. PNAS, 1991, 88(24): 11281-11284. DOI:10.1073/pnas.88.24.11281
doi: 10.1073/pnas.88.24.11281
[3]   VENEAULT-FOURREY C, BAROOAH M, EGAN M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus[J]. Science, 2006, 312(5773): 580-583. DOI:10.1126/science.1124550
doi: 10.1126/science.1124550
[4]   ZHU S Y, YAN Y X, QU Y M, et al. Role refinement of melanin synthesis genes by gene knockout reveals their functional diversity in Pyricularia oryzae strains[J]. Micro-biological Research, 2021, 242: 126620. DOI:10.1016/j.micres.2020.126620
doi: 10.1016/j.micres.2020.126620
[5]   EBBOLE D J. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annual Review of Phyto-pathology, 2007, 45(1): 437-456. DOI:10.1146/annurev.phyto.45.062806.094346
doi: 10.1146/annurev.phyto.45.062806.094346
[6]   LIU S H, DEAN R A. G protein alpha subunit genes control growth, development, and pathogenicity of Magnaporthe grisea [J]. Molecular Plant-Microbe Interactions, 1997, 10(9): 1075-1086. DOI:10.1094/MPMI.1997.10.9.1075
doi: 10.1094/MPMI.1997.10.9.1075
[7]   XU J R, HAMER J E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea [J]. Genes & Development, 1996, 10(21): 2696-2706. DOI:10.1101/gad.10.21.2696
doi: 10.1101/gad.10.21.2696
[8]   XU J R, STAIGER C J, HAMER J E. Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses[J]. PNAS, 1998, 95(21): 12713-12718. DOI:10.1073/pnas.95.21.12713
doi: 10.1073/pnas.95.21.12713
[9]   LEE S C, LEE Y H. Calcium/calmodulin-dependent signaling for appressorium formation in the plant pathogenic fungus Magnaporthe grisea [J]. Molecules and Cells, 1998, 8(6): 698-704.
[10]   RHO H S, JEON J Y, LEE Y H. Phospholipase C-mediated calcium signalling is required for fungal development and pathogenicity in Magnaporthe oryzae [J]. Molecular Plant Pathology, 2009, 10(3): 337-346. DOI:10.1111/j.1364-3703.2009.00536.x
doi: 10.1111/j.1364-3703.2009.00536.x
[11]   HE C C, KLIONSKY D J. Regulation mechanisms and signaling pathways of autophagy[J]. Annual Review of Genetics, 2009, 43: 67-93. DOI:10.1146/annurev-genet-102808-114910
doi: 10.1146/annurev-genet-102808-114910
[12]   MARROQUIN-GUZMAN M, WILSON R A. GATA-dependent glutaminolysis drives appressorium formation in Magnaporthe oryzae by suppressing TOR inhibition of cAMP/PKA signaling[J]. PLoS Pathogens, 2015, 11(4): e1004851. DOI:10.1371/journal.ppat.1004851
doi: 10.1371/journal.ppat.1004851
[13]   KERSHAW M J, TALBOT N J. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease[J]. PNAS, 2009, 106(37): 15967-15972. DOI:10.1073/pnas.0901477106
doi: 10.1073/pnas.0901477106
[14]   HE M, XU Y P, CHEN J H, et al. MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae [J]. Autophagy, 2018, 14(9): 1543-1561. DOI:10.1080/15548627.2018.1458171
doi: 10.1080/15548627.2018.1458171
[15]   QIAN B, LIU X Y, JIA J, et al. MoPpe1 partners with MoSap1 to mediate TOR and cell wall integrity signalling in growth and pathogenicity of the rice blast fungus Magna-porthe oryzae [J]. Environmental Microbiology, 2018, 20(11): 3964-3979. DOI:10.1111/1462-2920.14421
doi: 10.1111/1462-2920.14421
[16]   YIN Z Y, FENG W Z, CHEN C, et al. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae [J]. Autophagy, 2020, 16(5): 900-916. DOI:10.1080/15548627.2019.1644075
doi: 10.1080/15548627.2019.1644075
[17]   LEVINE B, KLIONSKY D J. Development by self-digestion: molecular mechanisms and biological functions of autophagy[J]. Developmental Cell, 2004, 6(4): 463-477. DOI:10.1016/s1534-5807(04)00099-1
doi: 10.1016/s1534-5807(04)00099-1
[18]   LU J P, LIU T B, LIN F C. Identification of mature appressorium-enriched transcripts in Magnaporthe grisea, the rice blast fungus, using suppression subtractive hybridiza-tion[J]. FEMS Microbiology Letters, 2005, 245(1): 131-137. DOI:10.1016/j.femsle.2005.02.032
doi: 10.1016/j.femsle.2005.02.032
[19]   LIU X H, GAO H M, XU F, et al. Autophagy vitalizes the pathogenicity of pathogenic fungi[J]. Autophagy, 2012, 8(10): 1415-1425. DOI:10.4161/auto.21274
doi: 10.4161/auto.21274
[20]   ZHU X M, LI L, WU M, et al. Current opinions on autophagy in pathogenicity of fungi[J]. Virulence, 2019, 10(1): 481-489. DOI:10.1080/21505594.2018.1551011
doi: 10.1080/21505594.2018.1551011
[21]   ZHU X M, LI L, CAI Y Y, et al. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus[J]. Autophagy, 2021, 17(10): 2939-2961. DOI:10.1080/15548627.2020.1848129
doi: 10.1080/15548627.2020.1848129
[22]   ZHANG S L, LIANG M L, NAQVI N, et al. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae [J]. Autophagy, 2017, 13(8): 1318-1330. DOI:10.1080/15548627.2017.1327103
doi: 10.1080/15548627.2017.1327103
[23]   CAI Y Y, WANG J Y, WU X Y, et al. MoOpy2 is essential for fungal development, pathogenicity, and autophagy in Magnaporthe oryzae [J]. Environmental Microbiology, 2022, 24(3): 1653-1671. DOI:10.1111/1462-2920.15949
doi: 10.1111/1462-2920.15949
[24]   ZHENG W H, ZHOU J, HE Y L, et al. Retromer is essential for autophagy-dependent plant infection by the rice blast fungus[J]. PLoS Genetics, 2015, 11(12): e1005704. DOI:10.1371/journal.pgen.1005704
doi: 10.1371/journal.pgen.1005704
[25]   ZHENG H W, GUO Z K, XI Y, et al. Sorting nexin (MoVps17) is required for fungal development and plant infection by regulating endosome dynamics in the rice blast fungus[J]. Environmental Microbiology, 2017, 19(10): 4301-4317. DOI:10.1111/1462-2920.13896
doi: 10.1111/1462-2920.13896
[26]   ZHANG X J, WANG G H, YANG C D, et al. A HOPS protein, MoVps41, is crucially important for vacuolar morpho-genesis, vegetative growth, reproduction and virulence in Magnaporthe oryzae [J]. Frontiers in Plant Science, 2017, 8: 1091. DOI:10.3389/fpls.2017.01091
doi: 10.3389/fpls.2017.01091
[27]   ZHU X M, LI L, WANG J Y, et al. Vacuolar protein-sorting receptor MoVps13 regulates conidiation and pathogenicity in rice blast fungus Magnaporthe oryzae [J]. Journal of Fungi, 2021, 7(12): 1084. DOI:10.3390/jof7121084
doi: 10.3390/jof7121084
[28]   LIU X H, CHEN S M, GAO H M, et al. The small GTPase MoYpt7 is required for membrane fusion in autophagy and pathogenicity of Magnaporthe oryzae [J]. Environmental Microbiology, 2015, 17(11): 4495-4510. DOI:10.1111/1462-2920.12903
doi: 10.1111/1462-2920.12903
[29]   LI X, GAO C Y, LI L W, et al. MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae [J]. PLoS Pathogens, 2017, 13(6): e1006449. DOI:10.1371/journal.ppat.1006449
doi: 10.1371/journal.ppat.1006449
[30]   YANG C D, DANG X, ZHENG H W, et al. Two Rab5 homologs are essential for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. Frontiers in Plant Science, 2017, 8: 620. DOI:10.3389/fpls.2017.00620
doi: 10.3389/fpls.2017.00620
[31]   ZHU X M, LIANG S, SHI H B, et al. VPS9 domain-containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae [J]. Environmental Microbiology, 2018, 20(4): 1516-1530. DOI:10.1111/1462-2920.14076
doi: 10.1111/1462-2920.14076
[32]   BACON C W, WHITE J F, Jr. Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants[J]. Symbiosis, 2016, 68: 87-98. DOI:10.1007/s13199-015-0315-2
doi: 10.1007/s13199-015-0315-2
[33]   PETRINI O. Taxonomy of endophytic fungi of aerial plant tissues[M]//FOKKEMA N J, VAN DEN HEUVEL. Micro-biology of the Phylosphere. Cambridge, UK: Cambridge University Press, 1986: 175-187.
[34]   BRUNDRETT M C. Understanding the roles of multi-functional mycorrhizal and endophytic fungi[M]//SCHULZ B J, BOYLE C J, SIEBER T N. Microbial Root Endophytes. Berlin, Heidelberg, Germany: Springer-Verlag Berlin Heidel-berg, 2006: 281-298.
[35]   KRINGS M, TAYLOR T N, HASS H, et al. Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses[J]. New Phytologist, 2007, 174(3): 648-657. DOI:10.1111/j.1469-8137.2007.02008.x
doi: 10.1111/j.1469-8137.2007.02008.x
[36]   CARROLL G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont[J]. Ecology, 1988, 69(1): 2-9. DOI:10.2307/1943154
doi: 10.2307/1943154
[37]   SAIKKONEN K, ION D, GYLLENBERG M. The persistence of vertically transmitted fungi in grass metapopu-lations[J]. Proceedings of the Royal Society B: Biological Sciences, 2002, 269(1498): 1397-1403. DOI:10.1098/rspb.2002.2006
doi: 10.1098/rspb.2002.2006
[38]   CLAY K. Fungal endophytes of grasses: a defensive mutualism between plants and fungi[J]. Ecology, 1988, 69(1): 10-16. DOI:10.2307/1943155
doi: 10.2307/1943155
[39]   PHILIPPE G. Lolitrem B and indole diterpene alkaloids produced by endophytic fungi of the genus Epichloë and their toxic effects in livestock[J]. Toxins, 2016, 8(2): 47. DOI:10.3390/toxins8020047
doi: 10.3390/toxins8020047
[40]   ARNOLD A E, LUTZONI F. Diversity and host range of foliar fungal endophytes: Are tropical leaves biodiversity hotspots?[J]. Ecology, 2007, 88(3): 541-549. DOI:10.1890/05-1459
doi: 10.1890/05-1459
[41]   ERNST M, MENDGEN K W, WIRSEL S G R. Endophytic fungal mutualists: seed-borne Stagonospora spp. enhance reed biomass production in axenic microcosms[J]. Molecular Plant-Microbe Interactions, 2003, 16(7): 580-587. DOI:10.1094/MPMI.2003.16.7.580
doi: 10.1094/MPMI.2003.16.7.580
[42]   REDMAN R S, SHEEHAN K B, STOUT R G, et al. Thermotolerance generated by plant/fungal symbiosis[J]. Science, 2002, 298(5598): 1581. DOI:10.1126/science.1072191
doi: 10.1126/science.1072191
[43]   ARNOLD A E, MEJÍA L C, KYLLO D, et al. Fungal endophytes limit pathogen damage in a tropical tree[J]. PNAS, 2003, 100(26): 15649-15654. DOI:10.1073/pnas.2533483100
doi: 10.1073/pnas.2533483100
[44]   MUCCIARELLI M, SCANNERINI S, BERTEA C, et al. In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization[J]. New Phytologist, 2003, 158(3): 579-591. DOI:10.1046/j.1469-8137.2003.00762.x
doi: 10.1046/j.1469-8137.2003.00762.x
[45]   SCHULZ B. Mutualistic interactions with fungal root endophytes[M]//SCHULZ B J E, BOYLE C J C, SIEBER T N. Microbial Root Endophytes. Berlin, Heidelberg, Germany: Springer-Verlag Berlin Heidelberg, 2006: 261-279.
[46]   BERTOLAZI A A, DE SOUZA S B, RUAS K F, et al. Inoculation with Piriformospora indica is more efficient in wild-type rice than in transgenic rice over-expressing the vacuolar H+-PPase[J]. Frontier in Microbiology, 2019, 10: 1087. DOI:10.3389/fmicb.2019.01087
doi: 10.3389/fmicb.2019.01087
[47]   VERGARA C, ARAUJO K E C, SPERANDIO M V L, et al. Dark septate endophytic fungi increase the activity of proton pumps, efficiency of 15N recovery from ammonium sulphate, N content, and micronutrient levels in rice plants[J]. Brazilian Journal of Microbiology, 2019, 50(3): 825-838. DOI:10.1007/s42770-019-00092-4
doi: 10.1007/s42770-019-00092-4
[48]   KHAN S A, HAMAYUN M, KHAN A L, et al. Isolation of plant growth promoting endophytic fungi from dicots inhabiting coastal sand dunes of Korea[J]. Pakistan Journal of Botany, 2012, 44(4): 1453-1460.
[49]   SIRRENBERG A, GÖBEL C, GROND S, et al. Pirifor-mospora indica affects plant growth by auxin production[J]. Physiologia Plantarum, 2007, 131(4): 581-589. DOI:10.1111/j.1399-3054.2007.00983.x
doi: 10.1111/j.1399-3054.2007.00983.x
[50]   BARAZANI O, VON DAHL C C, BALDWIN I T. Sebacina vermifera promotes the growth and fitness of Nicotiana attenuata by inhibiting ethylene signaling[J]. Plant Physiology, 2007, 144(2): 1223-1232. DOI:10.1104/pp.107.097543
doi: 10.1104/pp.107.097543
[51]   SHERAMETI I, SHAHOLLARI B, VENUS Y, et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. Journal of Biological Chemistry, 2005, 280(28): 26241-26247. DOI:10.1074/jbc.M500447200
doi: 10.1074/jbc.M500447200
[52]   GASONI L, DE GURFINKEL B S. The endophyte Cladorrhinum foecundissimum in cotton roots: phosphorus uptake and host growth[J]. Mycological Research, 1997, 101(7): 867-870. DOI:10.1017/S0953756296003462
doi: 10.1017/S0953756296003462
[53]   BARTHOLDY B A, BERRECK M, HASELWANDTER K. Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte[J]. BioMetals, 2001, 14(1): 33-42. DOI:10.1023/a:1016687021803
doi: 10.1023/a:1016687021803
[54]   MALLA R, PRASAD R, KUMAR R, et al. Phosphorus solubilizing symbiotic fungus: Piriformospra indica [J]. Endocytobiosis and Cell Research, 2004, 15(2): 579-600.
[55]   MACCHERONI W, Jr, AZEVEDO J L. Synthesis and secretion of phosphatases by endophytic isolates of Colleto-trichum musae grown under conditions of nutritional starvation[J]. The Journal of General and Applied Microbiology, 1998, 44(6): 381-387. DOI:10.2323/jgam.44.381
doi: 10.2323/jgam.44.381
[56]   BARROW J R, OSUNA-AVILA P, REYES-VERA I, et al. Fungal genomes that influence basic physiological processes of black grama and fourwing saltbush in arid southwestern rangelands: Proceedings of Shrubland dynamics—Fire and Water, August 10-12, 2004[C]. Fort Collins, CO, USA: United States Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2007.
[57]   USUKI F, NARISAWA K. A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage[J]. Mycologia, 2007, 99(2): 175-184. DOI:10.3852/mycologia.99.2.175
doi: 10.3852/mycologia.99.2.175
[58]   FONTANA D C, DE PAULA S, TORRES A G, et al. Endophytic fungi: biological control and induced resistance to phytopathogens and abiotic stresses[J]. Pathogens, 2021, 10(5): 570. DOI:10.3390/pathogens10050570
doi: 10.3390/pathogens10050570
[59]   SANTOS M, CESANELLI I, DIÁNEZ F, et al. Advances in the role of dark septate endophytes in the plant resistance to abiotic and biotic stresses[J]. Journal of Fungi, 2021, 7(11): 939. DOI:10.3390/jof7110939
doi: 10.3390/jof7110939
[60]   周莹,吴令上,陈秋燕,等.抗宿主白绢病的铁皮石斛内生真菌的筛选[J].中国中药杂志,2020,45(22):5459-5464. DOI:10.19540/j.cnki.cjcmm.20200816.102
ZHOU Y, WU L S, CHEN Q Y, et al. Screening of endophytic fungi against southern blight disease pathogen—Sclerotium delphinii in Dendrobium catenatum [J]. China Journal of Chinese Materia Medica, 2020, 45(22): 5459-5464. (in Chinese with English abstract)
doi: 10.19540/j.cnki.cjcmm.20200816.102
[61]   UROOJ F, FARHAT H, TARIQ A, et al. Role of endophytic Penicillium species and Pseudomonas monteilii in inducing the systemic resistance in okra against root rotting fungi and their effect on some physiochemical properties of okra fruit[J]. Journal of Applied Microbiology, 2021, 130(2): 604-616. DOI:10.1111/jam.14894
doi: 10.1111/jam.14894
[62]   ZHANG Y, SHI J L, GAO Z H, et al. Production of pinoresinol diglucoside, pinoresinol monoglucoside, and pinoresinol by Phomopsis sp. XP-8 using mung bean and its major components[J]. Applied Microbiology and Biotechnology, 2015, 99(11): 4629-4643. DOI:10.1007/s00253-015-6491-7
doi: 10.1007/s00253-015-6491-7
[63]   RODRIGO S, SANTAMARIA O, HALECKER S, et al. Antagonism between Byssochlamys spectabilis (anamorph Paecilomyces variotii) and plant pathogens: involvement of the bioactive compounds produced by the endophyte[J]. Annals of Applied Biology, 2017, 171(3): 464-476. DOI:10.1111/aab.12388
doi: 10.1111/aab.12388
[64]   MENDOZA-MENDOZA A, ZAID R, LAWRY R, et al. Molecular dialogues between Trichoderma and roots: role of the fungal secretome[J]. Fungal Biology Reviews, 2018, 32(2): 62-85. DOI:10.1016/j.fbr.2017.12.001
doi: 10.1016/j.fbr.2017.12.001
[65]   XU L L, HAN T, WU J Z, et al. Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus[J]. Phytomedicine, 2009, 16(6/7): 609-616. DOI:10.1016/j.phymed.2009.03.014
doi: 10.1016/j.phymed.2009.03.014
[66]   TERHONEN E, SIPARI N, ASIEGBU F O. Inhibition of phytopathogens by fungal root endophytes of Norway spruce[J]. Biological Control, 2016, 99: 53-63. DOI:10.1016/j.biocontrol.2016.04.006
doi: 10.1016/j.biocontrol.2016.04.006
[67]   WALLER F, ACHATZ B, BALTRUSCHAT H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield[J]. PNAS, 2005, 102(38): 13386-13391. DOI:10.1073/pnas.0504423102
doi: 10.1073/pnas.0504423102
[68]   RIPA F A, CAO W D, TONG S, et al. Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi[J]. BioMed Research International, 2019, 2019: 6105865. DOI:10.1155/2019/6105865
doi: 10.1155/2019/6105865
[69]   ZAHOOR M, IRSHAD M, RAHMAN H, et al. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7[J]. Ecotoxi-cology and Environmental Safety, 2017, 142: 139-149. DOI:10.1016/j.ecoenv.2017.04.005
doi: 10.1016/j.ecoenv.2017.04.005
[70]   YUAN Z L, LIN F C, ZHANG C L, et al. A new species of Harpophora (Magnaporthaceae) recovered from healthy wild rice (Oryza granulata) roots, representing a novel member of a beneficial dark septate endophyte[J]. FEMS Microbiology Letters, 2010, 307(1): 94-101. DOI:10.1111/j.1574-6968.2010.01963.x
doi: 10.1111/j.1574-6968.2010.01963.x
[71]   SU Z Z, MAO L J, LI N, et al. Evidence for biotrophic lifestyle and biocontrol potential of dark septate endophyte Harpophora oryzae to rice blast disease[J]. PLoS ONE, 2013, 8(4): e61332. DOI:10.1371/journal.pone.0061332
doi: 10.1371/journal.pone.0061332
[72]   XU X H, SU Z Z, WANG C, et al. The rice endophyte Harpophora oryzae genome reveals evolution from a pathogen to a mutualistic endophyte[J]. Scientific Reports, 2014, 4: 5783. DOI:10.1038/srep05783
doi: 10.1038/srep05783
[73]   XU X H, WANG C, LI S X, et al. Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling[J]. Scientific Reports, 2015, 5: 13624. DOI: 10.1038/srep13624
doi: 10.1038/srep13624
[1] Shuai TANG,Zhe XU,Wuyun Lü,Qi TONG,Yu XIAO,Zhengyi WANG. Functional analysis of the putative ribosome biogenesis factor MoRei1in Magnaporthe oryzae[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 443-452.
[2] Hainian CHEN,Rong FENG,Shengzhu YANG,Benfu CAO,Mingjiang WEN,Li LIU,Yingang LU. Identification of a biocontrol strain and optimization of its fermentation conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 177-188.
[3] Ming LIN,Luhua JIANG,Ting YU. Overexpression of Ace-AMP1 in Pichia pastoris on enhancing the inhibition of blue mold on pears[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 39-46.
[4] Yatao HE,Dandan GAO,Senning GAN,Ting SUN,Kuizheng CAI,Junlin LIU. Isolation and identification of a red pigment producer endophytic fungus Monascus sanguineus from Rehmannia glutinosa Libosch[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 1-7.
[5] Xiao Fenghu, Zhang Lei, Xie Zhen, Guo Yanbin, Chen Minwen, Wang Yongjun. Regulatory function of histidine kinase sensor encoding gene barA in bio-control effect of Rahnella aquatilis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(1): 56-63.