Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 443-452    DOI: 10.3785/j.issn.1008-9209.2021.06.153
Plant protection     
Functional analysis of the putative ribosome biogenesis factor MoRei1in Magnaporthe oryzae
Shuai TANG(),Zhe XU,Wuyun Lü,Qi TONG,Yu XIAO,Zhengyi WANG()
State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(4219KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To further explore the biological roles of MoRei1in the rice blast fungus Magnaporthe oryzae, we carried out MoREI1 gene deletion, phenotypic analysis of ΔMorei1 mutants, gene complementation and identification of its interaction proteins. The results showed that the ΔMorei1 mutants were defective in sexual reproduction, appressorium formation and pathogenicity. Deletion of MoREI1 led to significant increase of sensitivity to cell wall damaging and oxidative stress agents, and delay of glycogen mobilization and degradation during appressorium development. Moreover, the MoREI1 gene could partially complement the defects of Saccharomyces cerevisiae Δrei1 mutants, indicating that MoRei1 is a functional homolog of yeast Rei1, and may share a similar role in ribosome biogenesis. MoRei1 physically interacts with MoAlb1, a predicted nuclear export factor. Interestingly, deletion of MoREI1 resulted in the impairment of nuclear localization of MoAlb1. These results lay a foundation to clarify the roles of MoRei1 in fungal morphogenesis and pathogenicity in M. oryzae.



Key wordsMagnaporthe oryzae      ribosome biogenesis factor MoRei1      functional analysis      MoAlb1 protein     
Received: 15 June 2021      Published: 03 September 2022
CLC:  S 432.1  
Corresponding Authors: Zhengyi WANG     E-mail: 21816071@zju.edu.cn;zhywang@zju.edu.cn
Cite this article:

Shuai TANG,Zhe XU,Wuyun Lü,Qi TONG,Yu XIAO,Zhengyi WANG. Functional analysis of the putative ribosome biogenesis factor MoRei1in Magnaporthe oryzae. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 443-452.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.06.153     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/443


稻瘟病菌假定核糖体生成因子MoRei1功能研究

为深入探究稻瘟病菌假定核糖体生成因子MoRei1的生物学功能,通过敲除MoREI1基因、分析ΔMorei1突变体表型、鉴定基因互补及其互作蛋白功能等对其进行了研究。结果表明:敲除MoREI1基因后,稻瘟病菌ΔMorei1突变体的有性生殖能力丧失,附着胞形成率显著下降,致病力减弱;ΔMorei1突变体对细胞壁和氧化胁迫因子的敏感性增强,附着胞发育过程中糖原的移动和降解速率下降。稻瘟病菌MoREI1基因可恢复酿酒酵母REI1基因缺失突变体的部分表型,说明MoRei1与酵母核糖体生成因子Rei1在功能上具有同源性,并可能在核糖体生成过程中起类似的作用。稻瘟病菌MoRei1蛋白与预测的核输出因子MoAlb1间存在物理互作,且MoREI1基因缺失可影响稻瘟病菌MoAlb1蛋白的亚细胞定位。上述研究结果对阐明MoRei1在稻瘟病菌形态分化和致病性中的作用及其机制有重要意义。


关键词: 稻瘟病菌,  核糖体生成因子MoRei1,  功能分析,  MoAlb1蛋白 

引物名称

Primer name

引物序列(5' →3'

Primer sequence (5' →3')

扩增产物

Amplification product

MoREI-F1GGGAATATTAAGCTTGGTACATGGCGACGATAGCAGCCGCTC

MoREI1开放阅读框

Open reading frame

(ORF) of MoREI1

MoREI-R1TAGTGGATCCGAGCTCGTCAGCCACCAAGCTTCGAGTAA
MoREI1-F2CATATGGCCATGGAGGCCGAATTCATGGCGACGATAGCAGCCGC

MoREI1开放阅读框

ORF of MoREI1

MoREI1-R2TCGACGGATCGCCGGGAATTCTCAGCCACCAAGCTTCGAGTAA
MoALB1-F1ATGGAGGCCAGTGAATTCATGCCATCCAGGGCCAGC

MoALB1开放阅读框

ORF of MoALB1

MoALB1-R1TCGATGCCCACCCGGGTGGAATTCTCAAGCAAGCCACTCAGGCAA
Table 1 Primers used in this study
Fig. 1 Phylogenetic analysis of Rei1 homologs from different fungal species
Fig. 2 Growth status of the wild type BY4741, mutant Δrei1 and complementation strains Δreil/MoREI1 of S. cerevisiae at different temperaturesNegative control: Mutant strains of S. cerevisiae YBR267W inserted by the empty plasmid pYES2.
Fig. 3 Sexual reproduction tests of the wild type strainGuy11 and ΔMorei1-22 mutant of M. oryzae
Fig. 4 Influence of MoREI1 deletion on pathogenicity, appressorium formation and penetration of M. oryzaeA. Lesions on rice leaf at 5 d after spraying conidia; B. Morphology of appressorium (24 h); C. Formation rate of appressorium (24 h); D. Types of the invasion hyphae (AP: Appressorium; IH: Invasion hypha); E. Penetration assays of the barley epidermis and the proportions of different invasion hyphae (48 h). Double asterisks (**) indicate significant differences at the 0.01 probability level.
Fig. 5 Growth status of the wild type strain Guy11 and ΔMorei1-22 of M. oryzae on the stress media that contain the cell wall or oxidative stress factorsA. Growth status of various tested strains on the stress media; B. Growth inhibition rate of the tested strains. CM: Complete medium; CR: Congo red. Single asterisk (*) indicates significant differences at the 0.05 probability level, and the same as below.
Fig. 6 Influence of MoREI1 deletion on mobilization and degradation of glycogens during appressorium formation of M. oryzaeA. Staining of the conidia with KI/I2 solution; B. Statistic of glycogen mobilization in conidia of different tested strains; C. Statistic of glycogen degradation in appressoria of different tested strains.
Fig. 7 Identification of the interaction protein of MoRei1Positive control: Wild type strains of S. cerevisiae BY4741 inserted by the plasmid pGADT7+pGBKT7-53; Negative control: Wild type strains of S. cerevisiae BY4741 inserted by the plasmid pGADT7+pGBKT7-lam. AD: Activation domain; BD: DNA binding domain.
Fig. 8 Influence of MoREI1 deletion on thenuclear localization of MoAlb1
[1]   Jr, WOOLFORD J L, BASERGA S J. Ribosome biogenesis in the yeast Saccharomyces cerevisiae [J]. Genetics, 2013, 195(3): 643-681. DOI:10.1534/genetics.113.153197
doi: 10.1534/genetics.113.153197
[2]   GERHARDY S, MENET A M, PEÑA C, et al. Assembly and nuclear export of pre-ribosomal particles in budding yeast[J]. Chromosoma, 2014, 123(4): 327-344. DOI:‍10.1007/ s00412-014-0463-z
doi: ?10.1007/
[3]   NERURKAR P, ALTVATER M, GERHARDY S, et al. Eukaryotic ribosome assembly and nuclear export[J]. International Review of Cell and Molecular Biology, 2015, 319: 107-140. DOI:10.1016/bs.ircmb.2015.07.002
doi: 10.1016/bs.ircmb.2015.07.002
[4]   GADAL O, STRAUß D, KESSL J, et al. Nuclear export of 60S ribosomal subunits depends on Xpo1p and requires a nuclear export sequence-containing factor, Nmd3p, that associates with the large subunit protein Rpl10p[J]. Molecular and Cell Biology, 2001, 21(10): 3405-3415. DOI:‍10.1128/MCB.21.10.3405-3415.2001
doi: ?10.1128/MCB.21.10.3405-3415.2001
[5]   BRADATSCH B, KATAHIRA J, KOWALINSKI E, et al. Arx1 functions as an unorthodox nuclear export receptor for the 60S preribosomal subunit[J]. Molecular Cell, 2007, 27(5): 767-779. DOI:10.1016/j.molcel.2007.06.034
doi: 10.1016/j.molcel.2007.06.034
[6]   LEBRETON A, SAVEANU C, DECOURTY L, et al. A functional network involved in the recycling of nucleocytoplasmic pre-60S factors[J]. The Journal of Cell Biology, 2006, 173(3): 349-360. DOI:‍10.1083/jcb.200510080
doi: ?10.1083/jcb.200510080
[7]   YAO W, ROSER D, KÖHLER A, et al. Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2[J]. Molecular Cell, 2007, 26(1): 51-62. DOI:10.1016/j.molcel.2007.02.018
doi: 10.1016/j.molcel.2007.02.018
[8]   BAßLER J, KLEIN I, SCHMIDT C, et al. The conserved Bud20 zinc finger protein is a new component of the ribosomal 60S subunit export machinery[J]. Molecular and Cellular Biology, 2012, 32(24): 4898-4912. DOI:‍10.1128/MCB.00910-12
doi: ?10.1128/MCB.00910-12
[9]   MEYER A E, HOOVER L A, CRAIG E A. The cytosolic J-protein Jjj1 and Rei1 function in the removal of the pre-60S subunit factor Arx1[J]. Journal of Biological Chemistry, 2010, 285(2): 961-968. DOI:10.1074/jbc.M109.038349
doi: 10.1074/jbc.M109.038349
[10]   KEMMLER S, OCCHIPINIT L, VEISU M, et al. Yvh1 is required for a late maturation step in the 60S biogenesis pathway[J]. The Journal of Cell Biology, 2009, 186(6): 863-880. DOI:10.1083/jcb.200904111
doi: 10.1083/jcb.200904111
[11]   TALBOT N J. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea [J]. Annual Review of Microbiology, 2003, 57(1): 177-202. DOI:‍10.1146/annurev.micro.57.030502.090957
doi: ?10.1146/annurev.micro.57.030502.090957
[12]   EBBOLE D J. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annual Review of Phytopathology, 2007, 45(1): 437-456. DOI:‍10.1146/annurev .phyto.45.062806.094346
doi: ?10.1146/annurev
[13]   LIU X Y, QIAN B, GAO C Y, et al. The putative protein phosphatase MoYvh1 functions upstream of MoPdeH to regulate the development and pathogenicity in Magnaporthe oryzae [J]. Molecular Plant-Microbe Interactions, 2016, 29(6): 496-507. DOI:10.1094/MPMI-11-15-0259-R
doi: 10.1094/MPMI-11-15-0259-R
[14]   CAO H J, HUANG P Y, ZHANG L L, et al. Characterization of 47 Cys2-His2 zinc finger proteins required for the development and pathogenicity of the rice blast fungus Magnaporthe oryzae [J]. New Phytologist, 2016, 211(3): 1035-1051. DOI:10.1111/nph.13948
doi: 10.1111/nph.13948
[15]   王春燕.稻瘟病菌热激蛋白基因(MHF6MHF15)及去泛素化酶基因(MoUBP14)的功能研究[D].杭州:浙江大学,2018:16-17. DOI:10.3389/fmicb.2018.00769
WANG C Y. Functional analysis of the heat shock protein genes (MHF6 and MHF15) and deubiquitinating enzyme gene (MoUBP14) in Magnaporthe oryzae [D]. Hangzhou: Zhejiang University, 2018: 16-17. (in Chinese with English abstract)
doi: 10.3389/fmicb.2018.00769
[16]   TALBOT N J, EBBOLE D J, HAMER J E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea [J]. The Plant Cell, 1993, 5(11): 1575-1590. DOI:10.1105/tpc.5.11.1575
doi: 10.1105/tpc.5.11.1575
[17]   岳晓凤.稻瘟病菌两个致病相关基因ZNF1CKS1的鉴定及生物学功能分析[D].杭州:浙江大学,2015:27-28.
YUE X F. Identification and functional analysis of two pathogenicity-related genes, ZNF1 and CKS1 in Magnaporthe oryzae [D]. Hangzhou: Zhejiang University, 2015: 27-28. (in Chinese with English abstract)
[18]   IWASE M, TOH-E A. Ybr267w is a new cytoplasmic protein belonging to the mitotic signaling network of Saccharomyces cerevisiae [J]. Cell Structure and Function, 2004, 29(1): 1-15. DOI:10.1247/csf.29.1
doi: 10.1247/csf.29.1
[19]   PETER M, NEIMAN A M, PARK H O, et al. Functional analysis of the interaction between the samll GTP binding protein Cdc42 and the Ste20 protein kinase in yeast[J]. The EMBO Journal, 1996, 15(24): 7046-7059. DOI:10.1002/j.1460-2075.1996.tb01096.x
doi: 10.1002/j.1460-2075.1996.tb01096.x
[20]   DOLAN J W, KIRKMAN C, FIELDS S. The yeast Ste12 protein binds to the DNA sequence mediating pheromone induction[J]. PNAS, 1989, 86(15): 5703-5707. DOI:10.1073/pnas.86.15.5703
doi: 10.1073/pnas.86.15.5703
[21]   CHOU S, LANE S, LIU H P. Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae [J]. Molecular and Cellular Biology, 2006, 16(13): 4794-4805. DOI:10.1128/MCB.02053-05
doi: 10.1128/MCB.02053-05
[22]   THINES E, WEBER R W S, TALBOT N J. MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea [J]. The Plant Cell, 2000, 12(9): 1703-1718. DOI:10.1105/tpc.12.9.1703
doi: 10.1105/tpc.12.9.1703
[1] Lü Jingwen, LIU Rui, LI Guohua, LI Hongye, WANG Hongkai. Identification of pathogens causing fruit spot disease on Citrus grandis.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 687-694.