Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 708-718    DOI: 10.3785/j.issn.1008-9209.2022.08.012
Horticultural sciences     
Bioinformatics and expression analyses of heat shock protein 90 gene family in Rhododendron ovatum
Fengyan LI(),Fangqian QU,Fangmeng ZHAO,Qi WANG,Hong ZHOU,Liangsheng ZHANG,Yiping XIA(),Xiuyun WANG()
Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(3229KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To explore the roles of heat shock protein 90 (Hsp90) in plant growth development and response to high temperature stress, this study identified the Hsp90 family through bioinformatics methods in the whole genome of Rhododendron ovatum,which is a highly ornamental and widely adaptive species of Rhododendron. Gene structure, cis-acting elements, evolution, and expression pattern of the Hsp90 family were subsequently analyzed. The results showed that 11 members of the Hsp90 family were identified in R. ovatum, which were located on five chromosomes. Cis-acting element analysis showed that all the 11 members of the Hsp90 family were involved in the processes of plant hormone metabolism and stress responses. The phylogenetic tree of Hsp90 family in Arabidopsis thaliana, Solanum lycopersicum, Camellia sinensis, R. simsii, R. delavayi, R. henanense, and R. ovatum was constructed, within four main clades. Evolutionary analysis showed that the Hsp90 family has undergone purification selection during the differentiation of Rhododendron species. Moreover, the expression patterns of Hsp90 family in different tissues and under high temperature treatments indicated that Hsp90 family plays roles in flower development and the response of plants to high temperature stress. This study provides a foundation for further study of the functions of Hsp90 genes in Rhododendron.



Key wordsRhododendron      heat shock protein 90 (Hsp90) family      high temperature stress      expression pattern     
Received: 01 August 2022      Published: 03 November 2023
CLC:  S685.21  
Corresponding Authors: Yiping XIA,Xiuyun WANG     E-mail: 3180100530@zju.edu.cn;ypxia@zju.edu.cn;xiuyunwang@zju.edu.cn
Cite this article:

Fengyan LI,Fangqian QU,Fangmeng ZHAO,Qi WANG,Hong ZHOU,Liangsheng ZHANG,Yiping XIA,Xiuyun WANG. Bioinformatics and expression analyses of heat shock protein 90 gene family in Rhododendron ovatum. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 708-718.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.08.012     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/708


马银花热激蛋白90基因家族的生物信息学及表达分析

为探究杜鹃花热激蛋白90(heat shock protein 90, Hsp90)在植物生长发育调节和高温胁迫响应中的作用,本研究以杜鹃花属中观赏价值高、环境适应性强的马银花(Rhododendron ovatum)为材料,利用生物信息学方法对其Hsp90家族开展全基因组水平鉴定以及基因结构、顺式作用元件、进化、表达模式等分析。结果表明马银花Hsp90家族有11个成员,分布在5条染色体上。启动子区顺式作用元件分析表明,Hsp90家族成员均参与植物激素代谢和逆境胁迫响应过程。利用马银花、拟南芥、番茄、茶、杜鹃、河南杜鹃、马缨杜鹃的Hsp90家族构建的系统进化树可被划分为4个主要分支。进化分析显示,Hsp90家族在杜鹃花属分化过程中受到纯化选择作用。Hsp90家族在不同组织器官中和高温处理下的表达模式表明,马银花Hsp90家族参与了花器官的发育和植物对高温胁迫的响应。本研究为杜鹃花Hsp90基因功能的深入解析奠定了基础。


关键词: 杜鹃花属,  热激蛋白90家族,  高温胁迫,  表达模式 
基因编号 Gene ID

对应的拟南芥基因名称

Corresponding gene name

in A. thaliana

基因名称

Gene name

氨基酸数目

Number of

amino acids

理论等电点

Theoretical pI

分子量

Molecular weight/Da

亚细胞定位

Subcellular localization

Ro08903.1AtHsp90.1RoHsp90.1-17054.9981 135.33细胞质
Ro18590.1AtHsp90.1RoHsp90.1-27045.0481 231.33细胞核或细胞质
Ro03577.1AtHsp90.2RoHsp90.27004.9780 187.12细胞质
Ro26490.1AtHsp90.3、AtHsp90.4RoHsp90.36994.9980 112.17细胞质
Ro05386.1AtHsp90.7RoHsp90.7-18204.8494 165.75内质网
Ro09084.1AtHsp90.7RoHsp90.7-28164.8793 677.30内质网
Ro02336.1AtHsp90.5RoHsp90.58004.9590 463.78质体
Ro19745.1AtHsp90.6RoHsp90.6-17905.3689 903.70线粒体或线粒体和质体
Ro07264.1AtHsp90.6RoHsp90.6-27895.2289 668.49线粒体或线粒体和质体
Ro30271.1AtHsp90.7RoHsp90.7-35179.4259 536.05质体
Ro30261.1AtHsp90.7RoHsp90.7-41175.5513 265.07质体或线粒体
Table 1 Physicochemical property analysis of protein characterization and prediction of subcellular localization of Hsp90 family members in R. ovatum
Fig. 1 Phylogenetic tree of Hsp90 family in different species
Fig. 2 Collinearity analysis of Hsp90 genes among A. thaliana, R. simsii, C. sinensis, and R. ovatumBlue lines indicate collinearity of Hsp90 genes among different species and grey lines indicate collinearity of other genes.
Fig. 3 Collinearity analysis of Hsp90 family in R. ovatumRed lines indicate collinearity of Hsp90 genes in R. ovatum and grey lines indicate collinearity of other genes.

同源基因对

Homologous gene pairs

KaKsKa/Ks
RoHsp90.1-1 vs Rhsim03G0191300.10.002 3880.121 3510.019 678
RoHsp90.1-2 vs Rhsim07G0087900.10.012 7260.077 8340.163 502
RoHsp90.2 vs Rhsim06G0232600.10.003 6150.057 1590.063 245
RoHsp90.2 vs Rhsim04G0010300.10.025 8120.781 8510.033 014
RoHsp90.3 vs Rhsim04G0010300.10.002 7260.098 1830.027 764
RoHsp90.3 vs Rhsim06G0232600.10.026 6760.851 3300.031 335
RoHsp90.2 vs RoHsp90.30.025 4400.841 5770.030 229
RoHsp90.7-1 vs RhsimUnG0065400.10.054 4520.105 6500.515 400
RoHsp90.7-1 vs Rhsim06G0020200.10.212 5430.789 4950.269 214
RoHsp90.7-2 vs RhsimUnG0065400.10.056 4230.106 1660.531 460
RoHsp90.7-2 vs Rhsim06G0020200.10.225 0870.793 4200.283 692
RoHsp90.7-1 vs RoHsp90.7-20.002 5920.023 6400.109 645
RoHsp90.7-1 vs RoHsp90.7-40.188 0291.278 1580.147 109
RoHsp90.7-2 vs RoHsp90.7-40.188 0291.210 3150.155 355
RoHsp90.5 vs Rhsim09G0120100.10.005 3750.072 8440.073 788
RoHsp90.6-2 vs Rhsim06G0174600.10.012 0630.061 0670.197 537
RoHsp90.7-3 vs Rhsim06G0020200.10.239 2700.326 4890.732 858
Table 2 Ka/Ks analysis between Hsp90 homologous gene pairs in R. ovatum and R. simsii
Fig. 4 Conserved motifs and gene structures of Hsp90 family in R. ovatum
Fig. 5 Cis-acting elements analysis of Hsp90 family in R. ovatumThe presence of several colors in one rectangle indicates that this locus may be involved in multiple plant hormone or stress responses.
Fig. 6 Chromosomal localization ofHsp90gene family in R. ovatum
Fig. 7 Heatmap of Hsp90 gene expression in various tissues and organs of R. ovatumFPKM: Fragments per kilobase of exon model per million mapped reads.
Fig. 8 Heatmap of Hsp90 gene expression under different temperatures in R. ovatum
[1]   WANG W X, VINOCUR B, SHOSEYOV O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science, 2004, 9(5): 244-252. DOI: 10.1016/j.tplants.2004.03.006
doi: 10.1016/j.tplants.2004.03.006
[2]   PEARL L H, PRODROMOU C. Structure and mechanism of the Hsp90 molecular chaperone machinery[J]. Annual Review of Biochemistry, 2006, 75: 271-294. DOI: 10.1146/annurev.biochem.75.103004.142738
doi: 10.1146/annurev.biochem.75.103004.142738
[3]   FRYDMAN J. Folding of newly translated proteins in vivo: the role of molecular chaperones[J]. Annual Review of Biochem-istry, 2001, 70: 603-647. DOI: 10.1146/annurev.biochem.70.1.603
doi: 10.1146/annurev.biochem.70.1.603
[4]   PRASINOS C, KRAMPIS K, SAMAKOVLI D, et al. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development[J]. Journal of Experimental Botany, 2005, 56(412): 633-644. DOI: 10.1093/jxb/eri035
doi: 10.1093/jxb/eri035
[5]   SAMAKOVLI D, TICHÁ T, VAVRDOVÁ T, et al. YODA-HSP90 module regulates phosphorylation-dependent inactiva-tion of SPEECHLESS to control stomatal development under acute heat stress in Arabidopsis [J]. Molecular Plant, 2020, 13(4): 612-633. DOI: 10.1016/j.molp.2020.01.001
doi: 10.1016/j.molp.2020.01.001
[6]   MARGARITOPOULOU T, KRYOVRYSANAKI N, MEG-KOULA P, et al. HSP90 canonical content organizes a molecular scaffold mechanism to progress flowering[J]. The Plant Journal, 2016, 87(2): 174-187. DOI: 10.1111/tpj.13191
doi: 10.1111/tpj.13191
[7]   KOZEKO L Y. The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions (Arabidopsis thaliana)[J]. Cytology and Genetics, 2019, 53(2): 143-161. DOI: 10.3103/s0095452719020063
doi: 10.3103/s0095452719020063
[8]   KRISHNA P, GLOOR G. The Hsp90 family of proteins in Arabidopsis thaliana [J]. Cell Stress & Chaperones, 2001, 6(3): 238-246. DOI: 10.1379/1466-1268(2001)006<0238:thfopi>2.0.co;2
doi: 10.1379/1466-1268(2001)006<0238:thfopi>2.0.co;2
[9]   SONG Z P, PAN F L, YANG C, et al. Genome-wide identification and expression analysis of HSP90 gene family in Nicotiana tabacum [J]. BMC Genetics, 2019, 20: 35. DOI: 10.1186/s12863-019-0738-8
doi: 10.1186/s12863-019-0738-8
[10]   ZAI W S, MIAO L X, XIONG Z L, et al. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum [J]. Genetics and Molecular Research, 2015, 14(3): 7811-7820. DOI: 10.4238/2015.July.14.7
doi: 10.4238/2015.July.14.7
[11]   袁凌云,吴颖,张利婷,等.白菜HSP90基因家族的鉴定及表达分析[J].分子植物育种,2022,20(24):8064-8073. DOI:10.13271/j.mpb.020.008064
YUAN L Y, WU Y, ZHANG L T, et al. Identification and expression analysis of HSP90 gene family in Chinese cabbage[J]. Molecular Plant Breeding, 2022, 20(24): 8064-8073. (in Chinese with English abstract)
doi: 10.13271/j.mpb.020.008064
[12]   ZHANG J, LI J B, LIU B L, et al. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses[J]. BMC Genomics, 2013, 14: 532. DOI: 10.1186/1471-2164-14-532
doi: 10.1186/1471-2164-14-532
[13]   WANG X Y, GAO Y, WU X P, et al. High-quality evergreen azalea genome reveals tandem duplication-facilitated low-altitude adaptability and floral scent evolution[J]. Plant Biotech-nology Journal, 2021, 19(12): 2544-2560. DOI: 10.1111/pbi.13680
doi: 10.1111/pbi.13680
[14]   YANG F S, NIE S, LIU H, et al. Chromosome-level genome assembly of a parent species of widely cultivated azaleas[J]. Nature Communications, 2020, 11: 5269. DOI: 10.1038/s41467-020-18771-4
doi: 10.1038/s41467-020-18771-4
[15]   ZHOU X J, LI J T, WANG H L, et al. The chromosome-scale genome assembly, annotation and evolution of Rhodo-dendron henanense subsp. lingbaoense [J]. Molecular Ecology Resources, 2021, 22(3): 998-1001. DOI: 10.1111/1755-0998.13529
doi: 10.1111/1755-0998.13529
[16]   ZHANG L, XU P W, CAI Y F, et al. The draft genome assembly of Rhododendron delavayi Franch. var. delavayi [J]. GigaScience, 2017, 6(10): 1-11. DOI: 10.1093/gigascience/gix076
doi: 10.1093/gigascience/gix076
[17]   XIA E H, LI F D, TONG W, et al. Tea Plant Information Archive: a comprehensive genomics and bioinformatics platform for tea plant[J]. Plant Biotechnology Journal, 2019, 17(10): 1938-1953. DOI: 10.1111/pbi.13111
doi: 10.1111/pbi.13111
[18]   CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. DOI: 10.1016/j.molp.2020.06.009
doi: 10.1016/j.molp.2020.06.009
[19]   WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server[M]//LINK A J. 2-D Proteome Analysis Protocols, Methods in Molecular Biology. New Jersey: Humana Press, 1999: 531-552.
[20]   HIGO K, UGAWA Y, IWAMOTO M, et al. Plant cis-acting regulatory DNA elements (PLACE) database: 1999[J]. Nucleic Acids Research, 1999, 27(1): 297-300.
[21]   叶静.热休克蛋白进化分析及其家族分类的算法研究[D].河北,唐山:华北理工大学,2018.
YE J. The evolution analysis of heat shock proteins and algorithms for the classification their families[D]. Tangshan, Hebei: North China University of Science and Technology, 2018. (in Chinese with English abstract)
[22]   姚富文,王枚阁,宋春晖,等.苹果HSP90家族基因鉴定及高温胁迫下的表达分析[J].园艺学报,2021,48(5):849-859. DOI:10.16420/j.issn.0513-353x.2020-0895
YAO F W, WANG M G, SONG C H, et al. Identification and expression analysis of HSP90 gene family under high temperature stress in apple[J]. Acta Horticulturae Sinica, 2021, 48(5): 849-859. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2020-0895
[23]   张海.水稻HSP90基因家族功能研究[D].四川,成都:四川农业大学,2016.
ZHANG H. Function analysis of the OsHSP90 family in rice[D]. Chengdu, Sichuan: Sichuan Agricultural University, 2016. (in Chinese with English abstract)
[1] Yan HUANG,Hui ZHANG,Danni TONG,Jingru ZHOU,Fei WU,Xueqiu CHEN,Yi YANG,Guangxu MA,Aifang DU. Primary study on the expression pattern and function of zinc metalloproteinase NAS-31 in Haemonchus contortus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 805-814.
[2] Xincheng YUAN,Fei JIANG,Yonghai SHI,Jiabo XU,Yongshi LIU,Pingping DENG. Effects of high temperature stress on antioxidative and non-specific immunity indices of one-year-old Alosa sapidissima[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 107-117.
[3] Hao ZHENG,Xiachen Lü,Saiqiong TAN,Xueli LU,Xian ZHANG,Xiaoqin ZHANG,Dawei XUE. Physiological and biochemical indexes and waxy gene expression of wax-deficient mutant in barley under drought stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 8-13.
[4] BEGUM Mahfuj Ara, SHI Xiaoxiao, BAI Yueliang, JIANG Yandong, ZHOU Wenwu, MAO Cungui, ZHU Zengrong. Molecular cloning and characterization of a serine palmitoyltransferase gene from rice (Oryza sativa) and its gene expression in defense response to brown planthopper[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 365-372.
[5] XU Kangkang, DING Tianbo, YAN Yi, LI Can, YANG Wenjia. Expression analysis of glutathione S-transferase genes in Lasioderma serricorne (Coleoptera: Anobiidae) subjected to CO2-enriched atmosphere[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 599-607.