Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 696-707    DOI: 10.3785/j.issn.1008-9209.2023.05.121
Special Topic: Major Bacterial and Viral Diseases in Crops     
Identification of genes in response to cucurbit aphid-borne yellows virus infection in melon
Siyu YANG1(),Zihui GONG1,Zhongyuan HU1,2,Mingfang ZHANG1,2,Jinghua YANG1,2()
1.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
Download: HTML   HTML (   PDF(4586KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Cucurbit aphid-borne yellows virus (CABYV) is one of the most important viruses infecting cucurbits, such as melon (Cucumis melo), and severely affects the yield and quality of crops. Identification of CABYV-responsive genes can provide target genes for breeding of melon resistant to the viral disease. In this study, we used the CABYV infectious cloning vector to inoculate the melon XZM, and the disease identification and transcriptome analysis in the melon XZM after CABYV inoculation were performed at 0 dpi (days post inoculation), 5 dpi, 10 dpi, 15 dpi and 20 dpi. The results indicated that melon leaves showed typical disease symptoms of leaf chlorosis, yellowing and leaf thickening at 20 dpi. A total of 1 654 differentially expressed genes (DEGs) in response to CABYV infection were identified by transcriptome sequencing analysis, including 677 up-regulated genes and 977 down-regulated genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the responsive genes were mainly enriched in plant-pathogen interaction, photosynthesis, starch and sucrose metabolism, glyoxylate and dicarboxylate metabolism, etc., pathways and processes. Co-expression and interaction analysis of DEGs revealed that RIN4, a key gene in pathogen defense responses, may negatively regulate responses to CABYV infection in melon. This study demonstrates the possible molecular mechanism of responses to CABYV infection and provides a basis for breading melon against CABYV.



Key wordsmelon      cucurbit aphid-borne yellows virus      transcriptome sequencing      responsive genes     
Received: 12 May 2023      Published: 25 October 2023
CLC:  S652.1  
Corresponding Authors: Jinghua YANG     E-mail: siyu.yang@zju.edu.cn;yangjinghua@zju.edu.cn
Cite this article:

Siyu YANG,Zihui GONG,Zhongyuan HU,Mingfang ZHANG,Jinghua YANG. Identification of genes in response to cucurbit aphid-borne yellows virus infection in melon. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 696-707.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.05.121     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/696


甜瓜瓜类蚜传黄化病毒侵染响应基因鉴定

瓜类蚜传黄化病毒(cucurbit aphid-borne yellows virus, CABYV)是侵染甜瓜(Cucumis melo)等葫芦科作物的重要病毒之一,严重影响作物产量和品质。响应CABYV侵染的关键基因鉴定可为甜瓜抗病毒病育种提供靶基因。本研究用构建的CABYV侵染性克隆载体接种‘西州蜜’甜瓜,并对0 dpi(days post inoculation,感染后时间)、5 dpi、10 dpi、15 dpi、20 dpi时的甜瓜进行病情鉴定与转录组分析。结果表明:‘西州蜜’在20 dpi时表现出叶片明显褪绿、黄化和增厚等典型症状;基于转录组测序鉴定到响应CABYV侵染的差异表达基因(differentially expressed genes, DEGs)为1 654个,其中上调基因677个,下调基因977个。对这些响应基因进行基因本体(gene ontology, GO)与京都基因和基因组数据库(Kyoto Encyclopedia of Genes and Genomes, KEGG)富集分析,发现其主要富集在植物-病原互作、光合作用、淀粉和蔗糖代谢、乙醛酸盐和二羧酸盐代谢等途径和过程。差异基因共表达与互作分析发现,在CABYV侵染后,病原防御反应过程中的关键基因RIN4表达量呈下调趋势,推测其负调控甜瓜对CABYV的侵染响应。本研究结果为解析CABYV侵染甜瓜后基因响应的分子机制和甜瓜抗CABYV育种提供了重要依据。


关键词: 甜瓜,  瓜类蚜传黄化病毒,  转录组测序,  响应基因 
Fig. 1 Disease symptoms of melon XZM leaves inoculated with pCB301-CABYV at five time pointsA. Front of the leaf; B. Back of the leaf.
Fig. 2 Amplification of CP gene of CABYV in melon leaves at 20 dpiM: DL2000 DNA marker. 1-18: Melon leaves inoculated with pCB301-CABYV; 19: Negative control leaves.
Fig. 3 ELISA results of CABYVcontentsin the infected melon leaves1-18: Melon leaves inoculated with pCB301-CABYV; 19: Negative control leaves.
Fig.4 Correlation and PCA analyses of samples for transcriptome
Fig. 5 Numbers of DEGs in melon inoculated with pCB301-CABYV between groups
Fig. 6 GO function annotation (A) and KEGG enrichment analysis (B) of DEGs between 0 dip and 20 dpi treatment groups
 
Fig. 7 Analysis of significantly shared DEGs between groupsA. Venn diagram; B. GO function annotation; C. KEGG enrichment analysis.
Fig. 8 Plant-pathogen interaction network of significantly shared DEGs
Fig. 9 Relative expression levels of MELO3C021057 in meloninoculated by CABYV at five time pointsDifferent uppercase letters above box plots indicate significant differences at the 0.01 probability level.
 
[1]   彭斌.中国葫芦科作物病毒的分布、多样性及进化研究[D].湖北,武汉:华中农业大学,2019:13-15.
PENG B. Distribution, diversity and evolution of Cucurbit viruses in China[D]. Wuhan, Hubei: Huazhong Agricultural University, 2019: 13-15. (in Chinese with English abstract)
[2]   吴洋,刘莉铭,彭斌,等.新疆、甘肃和河南部分地区甜瓜瓜类蚜传黄化病毒分子变异初步分析[J].园艺学报,2017,44(4):777-783. DOI:10.16420/j.issn.0513-353x.2016-0913
WU Y, LIU L M, PENG B, et al. Preliminary studies on molecular variation of Cucurbit aphid-borne yellows virus from Xinjiang, Gansu and Henan[J]. Acta Horticulturae Sinica, 2017, 44(4): 777-783. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2016-0913
[3]   DOGIMONT C, BUSSEMAKERS A, MARTIN J, et al. Two complementary recessive genes conferring resistance to cucurbit aphid borne yellows luteovirus in an Indian melon line (Cucumis melo L.)[J]. Euphytica, 1997, 96(3): 391-395. DOI: 10.1023/A:1003069703294
doi: 10.1023/A:1003069703294
[4]   KASSEM M A, GOSALVEZ B, GARZO E, et al. Resistance to Cucurbit aphid-borne yellows virus in melon accession TGR-1551[J]. Phytopathology, 2015, 105(10): 1389-1396. DOI: 10.1094/PHYTO-02-15-0041-R
doi: 10.1094/PHYTO-02-15-0041-R
[5]   张欢.花生响应青枯菌侵染的转录组分析和抗病相关基因挖掘[D].北京:中国农业科学院,2021:40-42.
ZHANG H. Transcriptome analysis and resistance related gene mining in response to Ralstonia solanacearum infection in peanut[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021: 40-42. (in Chinese with English abstract)
[6]   贺苗苗.马铃薯抗晚疫病资源的评价和青薯9号响应晚疫病菌侵染的转录组分析[D].陕西,杨凌:西北农林科技大学,2020:76-78. DOI:10.3390/agronomy11101919
HE M M. Evaluation of potato germplasm for late blight resistance and transcriptome analysis of Qingshu 9 in response to Phytophthora infestans infection[D]. Yangling, Shaanxi: Northwest A&F University, 2020: 76-78. (in Chinese with English abstract)
doi: 10.3390/agronomy11101919
[7]   MORTAZAVI A, WILLIAMS B A, MCCUE K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature Methods, 2008, 5(7): 621-628. DOI: 10.1038/nmeth.1226
doi: 10.1038/nmeth.1226
[8]   LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. DOI: 10.1186/s13059-014-0550-8
doi: 10.1186/s13059-014-0550-8
[9]   LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. DOI: 10.1006/meth.2001.1262 .
doi: 10.1006/meth.2001.1262
[10]   JIANG L, LI Z N, YU X M, et al. Bioinformatics analysis of Aux/IAA gene family in maize[J]. Agronomy Journal, 2021, 113(2): 932-942. DOI: 10.1002/agj2.20594
doi: 10.1002/agj2.20594
[11]   YOON M, MIDDLEDITCH M J, RIKKERINK E H A. A conserved glutamate residue in RPM1-INTERACTING PROTEIN4 is ADP-ribosylated by the Pseudomonas effector AvrRpm2 to activate RPM1-mediated plant resistance[J]. The Plant Cell, 2022, 34(12): 4950-4972. DOI: 10.1093/plcell/koac286
doi: 10.1093/plcell/koac286
[12]   YOSHIDA T, CHRISTMANN A, YAMAGUCHI-SHINOZAKI K, et al. Revisiting the basal role of ABA-roles outside of stress[J]. Trends in Plant Science, 2019, 24(7): 625-635. DOI: 10.1016/j.tplants.2019.04.008
doi: 10.1016/j.tplants.2019.04.008
[13]   XU G Y, MOEDER W, YOSHIOKA K, et al. A tale of many families: calcium channels in plant immunity[J]. The Plant Cell, 2022, 34(5): 1551-1567. DOI: 10.1093/plcell/koac033
doi: 10.1093/plcell/koac033
[14]   JIANG Y X, DING P T. Calcium signaling in plant immunity: a spatiotemporally controlled symphony[J]. Trends in Plant Science, 2023, 28(1): 74-89. DOI: 10.1016/j.tplants.2022.11.001
doi: 10.1016/j.tplants.2022.11.001
[15]   BERNAL M, CASERO D, SINGH V, et al. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis [J]. The Plant Cell, 2012, 24(2): 738-761. DOI: 10.1105/tpc.111.090431
doi: 10.1105/tpc.111.090431
[16]   钟婵娟.植物RpsYu基因抗病抗逆功能研究[D].湖南,长沙:湖南农业大学,2022. DOI:10.17660/ejhs.2021/86.6.9
ZHONG C J. The roles of plant RpsYu gene in disease resistance and tolerance to abiotic stresses[D]. Changsha, Hunan: Hunan Agricultural University, 2022. (in Chinese with English abstract)
doi: 10.17660/ejhs.2021/86.6.9
[17]   李亚栋,何近刚.植物多胺代谢与胁迫响应研究进展[J].华北农学报,2012,27():240-245. DOI:10.3969/j.issn.1000-7091.2012.z1.048
LI Y D, HE J G. Advance in metabolism and response to stress of polyamines in plant[J]. Acta Agriculturae Boreali-Sinica, 2012, 27( ): 240-245. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7091.2012.z1.048
[18]   TANG B Z, LIU C Y, LI Z Q, et al. Multilayer regulatory landscape during pattern-triggered immunity in rice[J]. Plant Biotechnology Journal, 2021, 19(12): 2629-2645. DOI: 10.1111/pbi.13688
doi: 10.1111/pbi.13688
[19]   CHOI S, PROKCHORCHIK M, LEE H, et al. Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1-dependent immunity in Arabidopsis [J]. Molecular Plant, 2021, 14(11): 1951-1960. DOI: 10.1016/j.molp.2021.07.017
doi: 10.1016/j.molp.2021.07.017
[20]   徐子妍,李浩,周焕斌 等.CRISPR/Cas基因编辑技术与植物病毒研究进展[J].浙江大学学报(农业与生命科学版),2022,48(6):709-720. DOI: 10.3785/j.issn.1008-9209.2022.03.301
XU Z Y, LI H, ZHOU H B, et al. Research progress on CRISPR/Cas gene editing technology cooperating with plant virus[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2022, 48(6): 709-720. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2022.03.301
[1] Yuxin CHENG,Hongxia HU,Yanqing LIANG,Yajuan QIAN. Whole genome sequencing and analysis of isolates of tomato leaf curl New Delhi virus collected from watermelon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 687-695.
[2] Bowen QI,Menglan GUO,Hejun LU,Huan MEI,Ting ZHAO,Lei FANG. Identification and comparative analysis of genes in response to cold stress between two mainly cultivated tetraploid cottons[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 10-20.
[3] ZHAO Ning, XU Zhiran, QU Bin, HU Xiaohui . Effect of exogenous γ-aminobutyric acid on seeds germination of melon under salinity-alkalinity stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 40-46.