Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (5): 687-695    DOI: 10.3785/j.issn.1008-9209.2023.05.122
Special Topic: Major Bacterial and Viral Diseases in Crops     
Whole genome sequencing and analysis of isolates of tomato leaf curl New Delhi virus collected from watermelon
Yuxin CHENG(),Hongxia HU,Yanqing LIANG,Yajuan QIAN()
Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
Download: HTML   HTML (   PDF(3557KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Watermelon diseased leaves exhibiting leaf curl and yellowing symptoms were collected from Shanghai. To clarify the pathogenic type, small RNA high-throughput sequencing of the diseased leaves was performed, and the diseased samples were confirmed to be infected by tomato leaf curl New Delhi virus (ToLCNDV) through sequence splicing and dot-enzyme linked immunosorbent assay (Dot-ELISA). The DNA was further enriched by rolling circle replication (RCR) and was amplified by polymerase chain reaction (PCR) using back-to-back primers to obtain the full-length DNA-A and DNA-B sequences of two ToLCNDV watermelon isolates, which were tentatively named as ToLCNDV SH-WM1 and ToLCNDV SH-WM2. Phylogenetic analysis using MEGA 11.0 and SDT v1.2 softwares showed that ToLCNDV SH-WM1 was closely related to ToLCNDV SH-WM2 and other reported ToLCNDV isolates from China, with a total nucleotide sequence similarity of 98.99%-99.70%. Whole genome polymorphism analysis and population variation analysis showed that the single nucleotide variation rate of ToLCNDV isolates from China was less than 3%, with a total of 46 synonymous mutation sites and 29 non-synonymous mutation sites. There were no insertion or deletion mutations, and the amino acid sequence of AC4 protein was the most conservative among all encoded proteins. This study reveals that the ToLCNDV isolates from China have low intraspecific genetic variation.



Key wordstomato leaf curl New Delhi virus      watermelon      genomic variation     
Received: 12 May 2023      Published: 03 November 2023
CLC:  Q939.46  
Corresponding Authors: Yajuan QIAN     E-mail: 22016078@zju.edu.cn;yjqian@zju.edu.cn
Cite this article:

Yuxin CHENG,Hongxia HU,Yanqing LIANG,Yajuan QIAN. Whole genome sequencing and analysis of isolates of tomato leaf curl New Delhi virus collected from watermelon. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 687-695.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2023.05.122     OR     https://www.zjujournals.com/agr/Y2023/V49/I5/687


新德里番茄曲叶病毒西瓜分离物的全基因组序列测定及分析

从上海采集到表现卷叶和黄化症状的西瓜病叶,为明确其病原类型,本研究提取病叶RNA并进行小RNA高通量测序,经序列拼接比对和斑点酶联免疫吸附试验(dot-enzyme linked immunosorbent assay, Dot-ELISA),证实病样感染新德里番茄曲叶病毒(tomato leaf curl New Delhi virus, ToLCNDV)。进一步通过滚环复制(rolling circle replication, RCR)富集DNA,利用背靠背引物进行聚合酶链反应(polymerase chain reaction, PCR)扩增,获得2个ToLCNDV西瓜分离物的DNA-A和DNA-B全长序列,暂命名为ToLCNDV SH-WM1和ToLCNDV SH-WM2。使用MEGA 11.0、SDT v1.2等软件进行系统进化分析,结果表明,ToLCNDV SH-WM1与ToLCNDV SH-WM2及已报道的ToLCNDV其他中国分离物的亲缘关系较近,其全核苷酸序列相似度为98.99%~99.70%。全基因组多态性分析及群体变异分析显示,ToLCNDV中国分离物的单核苷酸变异率小于3%,其中,同义突变位点46个,非同义突变位点29个,不存在插入或缺失突变,各个编码蛋白中AC4蛋白氨基酸序列最为保守。本研究揭示ToLCNDV中国分离物具有较低的种内遗传变异。


关键词: 新德里番茄曲叶病毒,  西瓜,  基因组变异 

引物名称

Primer name

引物序列(5→3

Primer sequence (5→3)

SH-WM1 DNA-A

F: GTGAAGAACATGCATCGTGATCGT

R: CGTTGCTGTGCTCGGTTCAT

SH-WM1 DNA-B

F: TCGTGAATGGGGTACACTTCTGT

R: CGTTTGTGTTCTCCACTCGGTAC

SH-WM2 DNA-A

F: GTGAAGAACATGCATCGTGATCGT

R: CGTTGCTGTGCTCGGTTCAT

SH-WM2 DNA-B

F: TCGTGAATGGGGTACACTTCTGT

R: CGTTTGTGTTCTCCACTCGGTAC

Table 1 Information of primer sequences
Fig. 1 Typical symptoms of watermelon diseased leaf samples in the field
Fig. 2 Identification of watermelon diseased leaf samples infected by ToLCNDV using PCR (A) and Dot-ELISA (B)M: DNA marker; WT: Wild type.
Fig. 3 Genomic structures of ToLCNDV SH-WM
Fig. 4 Phylogenetic trees of DNA-A (A) and DNA-B (B) of ToLCNDV isolates

ToLCNDV分离物

ToLCNDV isolate

GenBank登录号 GenBank accession No.核苷酸序列相似度 Nucleotide sequence similarity/%
DNA-ADNA-BDNA-ADNA-B
ToLCNDV SH-WM2 (watermelon)OQ957166OQ95716899.7099.62
ToLCNDV 0823-1 (melon)OQ190939OQ19094999.6399.33
ToLCNDV 0823-2 (melon)OQ190940OQ19095099.6399.33
ToLCNDV 0923-1 (melon)OQ190941OQ19095199.4899.44
ToLCNDV 0923-3 (melon)OQ190942OQ19095299.4599.44
ToLCNDV 7856 (cucumber)OQ190943OQ19095399.4599.33
ToLCNDV 7922 (luffa)OQ190948OQ19095899.4599.33
ToLCNDV 8011 (cucumber)OQ190944OQ19095499.4199.33
ToLCNDV 8006 (cucumber)OQ190945OQ19095599.4599.33
ToLCNDV 8066 (cucumber)OQ190946OQ19095699.6799.33
ToLCNDV 8087 (luffa)OQ190947OQ19095799.4599.33
ToLCNDV Haimen4 (melon)OP585369OP68399699.1698.99
ToLCNDV Ningbo6 (melon)OP585370OP68399599.2698.99
ToLCNDV Shanghai1 (melon)OP683993OP68399499.3098.99
ToLCNDV Zhejiang (tomato)OP356207OP35620899.6798.99

ToLCNDV分离物

ToLCNDV isolate

氨基酸序列相似度 Amino acid sequence similarity/%
AC1AC2AC3AC4AC5AV1AV2BC1BV1
ToLCNDV SH-WM2 (watermelon)99.53100.0099.27100.00100.00100.00100.0099.6499.75
ToLCNDV 0823-1 (melon)99.2699.1199.51100.0099.5999.8799.1298.9399.75
ToLCNDV 0823-2 (melon)99.2699.1199.51100.0099.5999.8799.1298.9399.75
ToLCNDV 0923-1 (melon)99.2699.1199.51100.0099.5999.6199.1298.9399.75
ToLCNDV 0923-3 (melon)99.2699.1199.51100.0099.5999.6199.1298.9399.75
ToLCNDV 7856 (cucumber)99.4499.1299.51100.0099.5999.7499.1298.9399.75
ToLCNDV 7922 (luffa)99.4499.1299.51100.0099.5999.7499.1298.9399.75
ToLCNDV 8011 (cucumber)99.1799.1299.51100.0099.5999.7499.1298.9399.38
ToLCNDV 8006 (cucumber)99.1799.1299.51100.0099.5999.8799.1298.9399.38
ToLCNDV 8066 (cucumber)99.1799.1299.51100.0099.5999.8799.1298.9399.50
ToLCNDV 8087 (luffa)99.1799.1299.51100.0099.5999.7499.1298.9399.50
ToLCNDV Haimen4 (melon)99.4499.4199.75100.00100.0099.8799.4198.9399.87
ToLCNDV Ningbo6 (melon)99.4499.4199.75100.00100.0099.8799.4198.9399.87
ToLCNDV Shanghai1 (melon)99.4499.4199.75100.00100.0099.8799.4198.9399.87
ToLCNDV Zhejiang (tomato)99.4499.4199.75100.00100.0099.8799.4198.9399.87
Table 2 Alignments of sequence similarities between ToLCNDV SH-WM1 and other ToLCNDV isolates from China
Fig. 5 Comparisons of DNA-A (A) and DNA-B (B) whole genome nucleotide sequence similarities between ToLCNDV watermelon isolates and other ToLCNDV isolates from China
Fig. 6 Population variation levels of DNA-A (A) and DNA-B (B) of ToLCNDV isolates from China
Fig. 7 Analysis of genomic variation in ToLCNDV isolates from China
[1]   HANLEY-BOWDOIN L, BEJARANO E R, ROBERTSON D, et al. Geminiviruses: masters at redirecting and repro-gramming plant processes[J]. Nature Reviews Microbiology, 2013, 11(11): 777-788. DOI: 10.1038/nrmicro3117
doi: 10.1038/nrmicro3117
[2]   HANLEY-BOWDOIN L, SETTLAGE S B, OROZCO B M, et al. Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation[J]. Critical Reviews in Biochemistry and Molecular Biology, 2000, 35(2): 105-140.
[3]   MOFFAT A S. Geminiviruses emerge as serious crop threat[J]. Science, 1999, 286(5446): 1835. DOI: 10.1126/science.286.5446.1835
doi: 10.1126/science.286.5446.1835
[4]   ROGERS S G, BISARO D M, HORSCH R B, et al. Tomato golden mosaic virus A component DNA replicates autono-mously in transgenic plants[J]. Cell, 1986, 45(4): 593-600. DOI: 10.1016/0092-8674(86)90291-6
doi: 10.1016/0092-8674(86)90291-6
[5]   SANDERFOOT A A, LAZAROWITZ S G. Getting it together in plant virus movement: cooperative interactions between bipartite geminivirus movement proteins[J]. Trends in Cell Biology, 1996, 6(9): 353-358. DOI: 10.1016/0962-8924(96)10031-3
doi: 10.1016/0962-8924(96)10031-3
[6]   杨秋颖,杨秀玲,丁波,等.双生病毒在生物技术中的应用[J].中国科学:生命科学,2016,46(5):524-534. DOI:10.1360/N052015-00091
YANG Q Y, YANG X L, DING B, et al. The application of geminiviruses in biotechnology[J]. Scientia Sinica (Vitae), 2016, 46(5): 524-534. (in Chinese with English abstract)
doi: 10.1360/N052015-00091
[7]   RYBICKI E P. A top ten list for economically important plant viruses[J]. Archives of Virology, 2015, 160(1): 17-20. DOI: 10.1007/s00705-014-2295-9
doi: 10.1007/s00705-014-2295-9
[8]   LUIGI M, BERTIN S, MANGLLI A, et al. First report of tomato leaf curl New Delhi virus causing yellow leaf curl of pepper in Europe[J]. Plant Disease, 2019, 103(11): 2970. DOI: 10.1094/PDIS-06-19-1159-PDN
doi: 10.1094/PDIS-06-19-1159-PDN
[9]   PANNO S, IACONO G, DAVINO M, et al. First report of Tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy[J]. New Disease Reports, 2016, 33(1): 6. DOI: 10.5197/J.2044-0588.2016.033.006
doi: 10.5197/J.2044-0588.2016.033.006
[10]   PANNO S, CARUSO A G, TROIANO E, et al. Emergence of tomato leaf curl New Delhi virus in Italy: estimation of incidence and genetic diversity[J]. Plant Pathology, 2019, 68(3): 601-608. DOI: 10.1111/ppa.12978
doi: 10.1111/ppa.12978
[11]   TIWARI A K, SHARMA P K, KHAN M S, et al. Molecular detection and identification of Tomato leaf curl New Delhi virus isolate causing yellow mosaic disease in bitter gourd (Momordica charantia), a medicinally important plant in India[J]. Medicinal Plants, 2010, 2(2): 117-123. DOI: 10.5958/j.0975-4261.2.2.018
doi: 10.5958/j.0975-4261.2.2.018
[12]   MORIONES E, PRAVEEN S, CHAKRABORTY S. Tomato leaf curl New Delhi virus: an emerging virus complex threatening vegetable and fiber crops[J]. Viruses, 2017, 9(10): 264. DOI: 10.3390/v9100264
doi: 10.3390/v9100264
[13]   JUÁREZ M, RABADÁN M P, DÍAZ-MARTÍNEZ L, et al. Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain[J]. Frontiers in Microbiology, 2019, 10: 140. DOI: 10.3389/fmicb.2019.00140
doi: 10.3389/fmicb.2019.00140
[14]   ZAIDI S S E, MARTIN D P, AMIN I, et al. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses[J]. Molecular Plant Pathology, 2017, 18(7): 901-911. DOI: 10.1111/mpp.12481
doi: 10.1111/mpp.12481
[15]   CHANG H H, KU H M, TSAI W S, et al. Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon[J]. European Journal of Plant Pathology, 2010, 127(2): 219-228. DOI: 10.1007/s10658-010-9586-0
doi: 10.1007/s10658-010-9586-0
[16]   LI R C, LIU Y, YIN C L, et al. Occurrence of tomato leaf curl New Delhi virus in tomato (Lycopersicon esculentum) in China[J]. Plant Disease, 2023, 107(5): 1639. DOI: 10.1094/PDIS-06-22-1427-PDN
doi: 10.1094/PDIS-06-22-1427-PDN
[17]   ZENG R, GU H F, FAN J H, et al. Occurrence of tomato leaf curl New Delhi virus in cucurbit plants in China[J]. Plant Disease, 2023, 107(8): 2561. DOI: 10.1094/PDIS-01-23-0059-PDN
doi: 10.1094/PDIS-01-23-0059-PDN
[18]   GU Q S, YAN L Y, LIU L M, et al. First report of tomato leaf curl New Delhi virus infecting several cucurbit plants in China[J]. Plant Disease, 2023, 107(8): 2563. DOI: 10.1094/PDIS-01-23-0180-PDN
doi: 10.1094/PDIS-01-23-0180-PDN
[19]   郭淼,李婷婷,王朝文,等.基于小RNA测序技术和RT-PCR检测云南省大樱桃病毒[J].植物病理学报,2023.
GUO M, LI T T, WANG C W, et al. Identification of viruses infecting sweet cherry in Yunnan Province by small RNA sequencing and RT-PCR[J]. Acta Phytopathologica Sinica, 2023. (in Chinese with English abstract)
[20]   王致远,冯如盈,娄义念,等.基于小RNA深度测序技术首次发现侵染黄槿的杆状DNA病毒[J].植物病理学报,2023.
WANG Z Y, FENG R Y, LOU Y N, et al. First report of a badnavirus infecting Hibiscus tiliaceus revealed by small RNA deep sequencing[J]. Acta Phytopathologica Sinica, 2023. (in Chinese with English abstract)
[21]   赵志惠,李丰,朱天生,等.基于小RNA测序的甜樱桃病毒种类检测及鉴定[J].落叶果树,2022,54(2):9-13. DOI:10.13855/j.cnki.lygs.2022.02.003
ZHAO Z H, LI F, ZHU T S, et al. Detection and identification of sweet cherry virus based on small RNA sequencing[J]. Deciduous Fruits, 2022, 54(2): 9-13. (in Chinese with English abstract)
doi: 10.13855/j.cnki.lygs.2022.02.003
[22]   LI Z G, NONG Y, FAROOP T, et al. Small RNA deep sequencing reveals the presence of multiple viral infections in cucurbit crops in Guangdong, China[J]. Journal of Integrative Agriculture, 2022, 21(5): 1389-1400. DOI: 10.1016/S2095-3119(21)63661-4
doi: 10.1016/S2095-3119(21)63661-4
[23]   FORTES I M, SÁNCHEZ-CAMPOS S, FIALLO-OLIVÉ E, et al. A novel strain of tomato leaf curl New Delhi virus has spread to the Mediterranean Basin[J]. Viruses, 2016, 8(11): 307. DOI: 10.3390/v8110307
doi: 10.3390/v8110307
[24]   BROWN J K, ZERBINI F M, NAVAS-CASTILLO J, et al. Revision of Begomovirus taxonomy based on pairwise sequence comparisons[J]. Archives of Virology, 2015, 160(6): 1593-1619. DOI: 10.1007/s00705-015-2398-y
doi: 10.1007/s00705-015-2398-y
[25]   VENKATARAVANAPPA V, ASHWATHAPPA K V, REDDY C N L, et al. Characterization of tomato leaf curl New Delhi virus associated with leaf curl and yellowing disease of watermelon and development of LAMP assay for its detection[J]. Biotechnology, 2020, 10(6): 282. DOI: 10.1007/s13205-020-02245-x
doi: 10.1007/s13205-020-02245-x
[26]   DYFFY S, HOLMES E C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses[J]. Journal of General Virology, 2009, 90(6): 1539-1547. DOI: 10.1099/vir.0.009266-0
doi: 10.1099/vir.0.009266-0
[27]   DUFFY S, HOLMES E C. Phylogenetic evidence for rapid rates of molecular evolution in the single-stranded DNA begomovirus Tomato yellow leaf curl virus [J]. Journal of Virology, 2008, 82(2): 957-965. DOI: 10.1128/jvi.01929-07
doi: 10.1128/jvi.01929-07
[28]   LIMA A T M, SILVA J C F, SILVA F N, et al. The diversification of begomovirus populations is predominantly driven by mutational dynamics[J]. Virus Evolution, 2017, 3(1): vex005. DOI: 10.1093/ve/vex005
doi: 10.1093/ve/vex005
[29]   MAR T B, XAVIER C A D, LIMA A T M, et al. Genetic variability and population structure of the New World begomovirus Euphorbia yellow mosaic virus [J]. Journal of General Virology, 2017, 98(6): 1537-1551. DOI: 10.1099/jgv.0.000784
doi: 10.1099/jgv.0.000784
No related articles found!