Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (6): 753-760    DOI: 10.3785/j.issn.1008-9209.2022.07.111
Research articles     
Molecular mechanisms underlying the regulation of tobacco defenses against Bemisia tabaci by the salivary effector BtArmet targeting NtWRKY51
Hui DU(),Xiaowei WANG,Shusheng LIU()
Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(3615KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The whitefly Bemisia tabaci, an important agricultural insect pest, secretes saliva into plants while feeding on them. Our previous study found that the whitefly secretes the salivary effector protein BtArmet (Bemisia tabaci arginine rich, mutated in early stage of tumors) to inhibit plant resistance by targeting tobacco cystatin. In this study, we continued to screen tobacco proteins that interact with the salivary effector protein BtArmet. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays showed that Nicotiana tabacum WRKY51 interacted with BtArmet. The up-regulation of NtWRKY51 gene in tobacco was significantly induced by whitefly infestation. However, virus-induced gene silencing (VIGS) assays combined with bioassay of whiteflies showed that the fecundity of NtWRKY51-silenced tobacco plants by female whiteflies was significantly lower than that of the negative control (tobacco with silenced empty vector). Silencing NtWRKY51 gene had no effect on phytohormone signaling pathways mediated by salicylic acid or jasmonic acid in tobacco plants. These results provide references for further investigations on the molecular mechanisms underlying plant resistance to whiteflies.



Key wordswhitefly      saliva      tobacco      plant defense      WRKY51      insect-plant interaction     
Received: 11 July 2022      Published: 27 December 2022
CLC:  S 436  
Corresponding Authors: Shusheng LIU     E-mail: duhui8023@163.com;shshliu@zju.edu.cn
Cite this article:

Hui DU,Xiaowei WANG,Shusheng LIU. Molecular mechanisms underlying the regulation of tobacco defenses against Bemisia tabaci by the salivary effector BtArmet targeting NtWRKY51. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 753-760.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.07.111     OR     https://www.zjujournals.com/agr/Y2022/V48/I6/753


唾液效应因子BtArmet靶向NtWRKY51调控烟草防御烟粉虱的分子机制

重要农业害虫烟粉虱(Bemisia tabaci)具刺吸式口器,在取食植物韧皮部汁液的同时将唾液分泌到植物中。前期研究发现,烟粉虱通过分泌唾液效应蛋白BtArmet(Bemisia tabaci arginine rich, mutated in early stage of tumors)靶向烟草体内的半胱氨酸蛋白酶抑制素蛋白,抑制植物的抗虫性。本研究在前期研究的基础上继续筛选与烟粉虱唾液效应蛋白BtArmet互作的烟草蛋白。通过酵母双杂交和双分子荧光互补(bimolecular fluorescence complementation, BiFC)实验发现,普通烟的转录因子WRKY51可以与BtArmet发生互作。烟粉虱的侵染可以显著诱导烟草中NtWRKY51基因表达上调,但病毒诱导的基因沉默(virus-induced gene silencing, VIGS)方法结合烟粉虱生物学测定实验显示,烟粉虱在沉默NtWRKY51基因烟草上的产卵量显著低于阴性对照(沉默空载的烟草),且沉默NtWRKY51基因烟草中水杨酸和茉莉酸介导的激素信号通路均不受影响。上述结果为进一步探究植物对烟粉虱的抗性及其分子机制奠定了基础。


关键词: 烟粉虱,  唾液,  烟草,  植物防御,  WRKY51,  昆虫-植物互作 

引物名称

Primer name

基因名称/用途

Gene name/usage

引物序列(5→3

Primer sequence (5→3)

BtArmet-BKBtArmet/Y2HF: GGAATTCATGGCAACACCAAGCGAT
R: CGGGATCCTTACAATTCATCGCGGACAT
BtArmet-p2YCBtArmet/BiFCF: CCCTTAATTAACATGGCAACACCAAGCGATG
R: GGGACTAGTCAATTCATCGCGGACATAT
NtWRKY51-p2YNNtWRKY51/BiFCF: CCCTTAATTAACATGAACTCCACCTTCCTAG
R: GGGACTAGTAACACCATTGGGAATTGCTT
NtWRKY51 qRTNtWRKY51/qRT-PCRF: TGGAGGAAGTATGGGAAGAAGA
R: GCTTTCATGGTTATGTCTGCCT
NtWRKY51 VIGSNtWRKY51/VIGSF: CGGGATCCATGAACTCCACCTTCCTAG
R: GCTCTAGAATTCATCTTTTCTTTCTTTATCC
qPALPAL/qRT-PCRF: AAGAAGCGTTCCGTGTTGCTG
R: TCGGGCTTTCCATTCATCACC
qICSICS/qRT-PCRF: CAGTTCTGTTTGCAACCTCC
R: CGCTGGAACATACAGCCTC
qBGL2BGL2/qRT-PCRF: TAGGAAACAACATCAAGGTCTCAAC
R: TCCCTACAGATGCCCCTCC
qFAD7FAD7/qRT-PCRF: CATGTGGCTTGACTTAGTTACCTACT
R: CCCTGACTTCTTTGGCTCCTT
qCOI1COI1/qRT-PCRF: GAGAGGAGAGAATAACAGATC
R: AGCAGCCTCTCACTTCTAGC
qPI2PI2/qRT-PCRF: ACTACTTCGGTCAGGATGG
R: AACGGGCAACTTATGGTA
qGAPDHGAPDH/qRT-PCRF: GCAGTGAACGACCCATTTATCTC
R: AACCTTCTTGGCACCACCCT
Table 1 Primers used for gene cloning, vector construction and quantitative detection
Fig. 1 Sequence analysis of NtWRKY51Single asterisk (*) indicates the termination codon.
Fig. 2 Interactions of BtArmet and NtWRKY51 in the yeast two-hybrid systemBD: pGBKT7 empty vector; AD: pGADT7 empty vector; QDO: Quadruple dropout substrate; X: Chromogenic substrate of X-α-gal; A: Aureobasidin A; DDO: Double dropout substrate.
Fig. 3 Interactions of BtArmet and NtWRKY51 in vivoRFP: Red fluorescent protein; YFP: Yellow fluorescent protein. RFP was used as a marker of the nucleus. Unfused cYFP and nYFP proteins were used as negative controls.
Fig. 4 Relative expression level of NtWRKY51 in N. tabacum fed by whitefliesSingle asterisk (*) indicates significant differences at the 0.05 probability level, and n=4. The same as Fig. 6.
Fig. 5 Phenotype of NtWRKY51-silenced N. tabacumNegative control: Tobacco with silenced empty vector, and the same as below.
Fig. 6 Relative expression level of NtWRKY51 in N. tabacum
Fig. 7 Fecundity and survival rate of whiteflies on NtWRKY51-silenced N. tabacumDouble asterisks (**) indicate highly significant differences at the 0.01 probability level, and ns indicates no significant differences; n=20.
Fig. 8 Relative expression levels of marker genes in SA-signaling pathways and JA-signaling pathways in NtWRKY51-silenced N. tabacumThe symbol ns indicates no significant differences, and n=6.
[1]   DE BARRO P J, LIU S S, BOYKIN L M, et al. Bemisia tabaci: a statement of species status[J]. Annual Review of Entomology, 2011, 56: 1-19. DOI:10.1146/annurev-ento-112408-085504
doi: 10.1146/annurev-ento-112408-085504
[2]   BROWN J K, FROHLICH D R, ROSELL R C. The sweetpotato or silverleaf whiteflies: Biotypes of Bemisia tabaci or a species complex?[J]. Annual Review of Entomology, 1995, 40: 511-534. DOI:10.1146/annurev.en.40.010195.002455
doi: 10.1146/annurev.en.40.010195.002455
[3]   LIU S S, COLVIN J, DE BARRO P J. Species concepts as applied to the whitefly Bemisia tabaci systematics: How many species are there?[J]. Journal of Integrative Agriculture, 2012, 11(2): 176-186. DOI:10.1016/S2095-3119(12)60002-1
doi: 10.1016/S2095-3119(12)60002-1
[4]   LEE W, PARK J, LEE G S, et al. Taxonomic status of the Bemisia tabaci complex (Hemiptera: Aleyrodidae) and reassessment of the number of its constituent species[J]. PLoS ONE, 2013, 8(5): e63817. DOI:10.1371/journal.pone.0063817
doi: 10.1371/journal.pone.0063817
[5]   KANAKALA S, GHANIM M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts[J]. PLoS ONE, 2019, 14(3): e0213946. DOI:10.1371/journal.pone.0213946
doi: 10.1371/journal.pone.0213946
[6]   DALTON R. Whitefly infestations: the Christmas invasion[J]. Nature, 2006, 443(7114): 898-900. DOI:10.1038/443898a
doi: 10.1038/443898a
[7]   LIU S S, DE BARRO P J, XU J, et al. Asymmetric mating interactions drive widespread invasion and displacement in a whitefly[J]. Science, 2007, 318(5857): 1769-1772. DOI:10.1126/science.1149887
doi: 10.1126/science.1149887
[8]   XU J, LIN K K, LIU S S. Performance on different host plants of an alien and an indigenous Bemisia tabaci from China[J]. Journal of Applied Entomology, 2011, 135(10): 771-779. DOI:10.1111/j.1439-0418.2010.01581.x
doi: 10.1111/j.1439-0418.2010.01581.x
[9]   CHEN C Y, MAO Y B. Research advances in plant-insect molecular interaction[J]. F1000Research, 2020, 9(F1000 Faculty Reviews): 198. DOI:10.12688/f1000research.21502.1
doi: 10.12688/f1000research.21502.1
[10]   TAO Z, KOU Y J, LIU H B, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. Journal of Experimental Botany, 2011, 62(14): 4863-4874. DOI:10.1093/jxb/err144
doi: 10.1093/jxb/err144
[11]   ASAI T, TENA G, PLOTNIKOVA J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415(6875): 977-983. DOI:10.1038/415977a
doi: 10.1038/415977a
[12]   ISHIHAMA N, YAMADA R, YOSHIOKA M, et al. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response[J]. The Plant Cell, 2011, 23(3): 1153-1170. DOI:10 .1105/tpc.110.081794
doi: 10
[13]   KLOTH K J, WIEGERS G L, BUSSCHER-LANGE J, et al. AtWRKY22 promotes susceptibility to aphids and modulates salicylic acid and jasmonic acid signalling[J]. Journal of Experimental Botany, 2016, 67(11): 3383-3396. DOI:10.1093/jxb/erw159
doi: 10.1093/jxb/erw159
[14]   DU H, XU H X, WANG F, et al. Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin[J]. New Phytologist, 2022, 234(5): 1848-1862. DOI:10.1111/nph.18063
doi: 10.1111/nph.18063
[15]   HUANG C J, ZHANG T, LI F F, et al. Development and application of an efficient virus-induced gene silencing system in Nicotiana tabacum using geminivirus alphasatellite[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(2): 83-92. DOI:10.1631/jzus.B1000157
doi: 10.1631/jzus.B1000157
[16]   PANDEY S P, SOMSSICH I E. The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4): 1648-1655. DOI:10.1104/pp.109.138990
doi: 10.1104/pp.109.138990
[17]   RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends in Plant Science, 2010, 15(5): 247-258. DOI:10.1016/j.tplants.2010.02.006
doi: 10.1016/j.tplants.2010.02.006
[18]   EULGEM T, SOMSSICH I E. Networks of WRKY transcription factors in defense signaling[J]. Current Opinion in Plant Biology, 2007, 10(4): 366-371. DOI:10.1016/j.pbi.2007.04.020
doi: 10.1016/j.pbi.2007.04.020
[19]   WANI S H, ANAND S, SINGH B, et al. WRKY transcription factors and plant defense responses: latest discoveries and future prospects[J]. Plant Cell Reports, 2021, 40(7): 1071-1085. DOI:10.1007/s00299-021-02691-8
doi: 10.1007/s00299-021-02691-8
[20]   VAN VERK M C, PAPPAIOANNOU D, NEELEMAN L, et al. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors[J]. Plant Physiology, 2008, 146(4): 1983-1995. DOI:10.1104/pp.107.112789
doi: 10.1104/pp.107.112789
[1] Peige ZHONG,Yeying ZHOU,Yan ZHANG,Yi SHI,Yan GUO,Baoguo LI,Yuntao MA. Extraction and discrimination of tobacco leaf shape based on landmark method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 533-542.
[2] Aobo JIA,Tianhao DONG,Yan ZHANG,Binglin ZHU,Yanguo SUN,Yuanhua WU,Yi SHI,Yuntao MA,Yan GUO. Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 393-402.
[3] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[4] PENG Yaoyao, HOU Chunxiao, ZHAN Yihua, HUANG Yingying, SUN Xiangyu, WENG Xiaoyan. RNA-seq approach to discriminate gene expression profiles in RIXI overexpressing transgenic rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 643-653.
[5] CHEN Tingting, LI Xianfu, JIA Chunlei, AN Xueqin, ZHU Jun, XIAO Lizeng, DAI Xiumei, ZHANG Jiankui. Characteristics of new flue-cured tobacco strains developed from Yunyan87 mutants and their DNA fingerprint identification.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 179-189.
[6] YANG Xing1,2, HUANG Huagang1,3*, WANG Ling, SHEN Yan, LU Kouping, HAN Xuebo, WANG Hailong. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 245-255.
[7] Wei Kesu, Hu Tingting, Li Delun, Tu Yonggao, Yu Liangji, Tu Guangjun. Effects of mixed application of effective microorganisms (EM) and soil amendments on agronomic characteristic and quality of flue-cured tobacco[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 439-448.
[8] Yang Zhili, Guo Chuanlong, Liu Lei, Wu Konghuan, Wang Lin, Li Kunzhi, Zhao Yan, Chen Limei. Overexpression of soybean SGF14a enhanced tolerance of transgenic tobacco plants to aluminum stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 285-292.
[9] Wu Shengjiang1, Dian Ruili2, Wei Kesu1, Li Delun1, Han Zhikang3, Lin Yechun1, Pan Wenjie1, Xie Yishu1*. Comparison of botanical characters and physiological characteristics among different flue-cured tobacco genotypes in
seedling transplanting period
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 511-518.
[10] Zhou Jiaping, Yang Chunyuan, Wu Chun, Wang Rengang, Shi Yuewei, Xie Shengdong, Wang Zhihong, Xu Haiming, Ren Xueliang . Genetic diversity and development of core collection in tobacco (Nicotiana tabacum L.) resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 440-450.
[11] XU Lu lu,PAN Wen jie,ZHANG Guo ping. Investigation on difference in auto toxicity among tobacco cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 119-126.
[12] CHENG Weishun,XU Qiufang,LI Fei,XU Youping,CAI Xinzhong. Establishment of a suitable control vector for Tobacco rattle virusinduced gene silencing analysis inNicotiana benthamiana[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 10-20.