Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (4): 533-542    DOI: 10.3785/j.issn.1008-9209.2021.07.091
Agricultural engineering     
Extraction and discrimination of tobacco leaf shape based on landmark method
Peige ZHONG1(),Yeying ZHOU1,Yan ZHANG2,Yi SHI2,Yan GUO1,Baoguo LI1,Yuntao MA1()
1.College of Land Science and Technology, China Agricultural University, Beijing 100193, China
2.Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China
Download: HTML   HTML (   PDF(3187KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

The shape information of leaves from 39 tobacco varieties was extracted by using landmark method. The differences in leaf shapes were compared and analyzed among different varieties and different leaf positions at different growth stages. Principal component analysis was used to reduce the dimensionality of the data. The sources of differences were visualized among different leaf shapes. Decision tree, random forest and support vector machine were used to perform discriminant analysis on tobacco leaf shapes. The results of the principal component analysis showed that the first three principal components accounted for 42.7%, 21.3% and 10.7% of the total differences in tobacco leaves at the flowering stage, which were characterized by leaf width and the maximum width position, leaf torsion, and petiole size, respectively. The discriminant results of tobacco leaf shape based on machine learning showed that the discriminant accuracy based on landmark data was 52%-62%, while the value was 51%-54% for common leaf shape indicators. The discriminant accuracy on superior or medial leaves was about 10% higher than that of inferior leaves, representing more obvious characteristics of variety. Due to the growth of the leaves, the discriminant accuracy of the leaves at rosette stage was nearly 10% lower than flowering stage. The discriminant accuracy of landmark method increased to 77% after removing 12 atypical varieties. The effect of the landmark method on leaf shape information extraction is better than the common leaf shape indicators, which provides a new idea for the automated extraction of leaf shape information.



Key wordsgeometric morphometrics      landmark method      tobacco      leaf shape      machine learning     
Received: 09 July 2021      Published: 03 September 2022
CLC:  S 24  
Corresponding Authors: Yuntao MA     E-mail: zhongpg1998@163.com;yuntao.ma@cau.edu.cn
Cite this article:

Peige ZHONG,Yeying ZHOU,Yan ZHANG,Yi SHI,Yan GUO,Baoguo LI,Yuntao MA. Extraction and discrimination of tobacco leaf shape based on landmark method. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 533-542.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.07.091     OR     https://www.zjujournals.com/agr/Y2022/V48/I4/533


基于标志点法的烟草叶形提取与判别

本研究采用标志点法并基于39个烟草品种叶片图像提取叶形信息,比较分析了不同生长时期、不同品种和不同叶位间的叶形差异。采用主成分分析法实现数据降维并对叶形差异进行可视化表达,采用决策树、随机森林和支持向量机法对不同类型叶形进行判别分析。主成分分析结果表明,烟草叶片间差异的主要来源分别为叶片宽和最大宽位置、叶片扭转程度以及叶柄部3方面,分别占总差异的42.7%、21.3%、10.7%。叶形判别结果表明,采用标志点数据的判别精度为52%~62%,而采用常用叶形指标的判别精度为51%~54%。上部叶、中部叶的判别精度高于下部叶10%左右,具有更明显的品种特征。团棵期叶片由于处于营养生长期,判别精度低于开花期叶片近10%。去除12类非典型品种后,标志点法判别精度上升至77%。标志点数据在叶形信息提取上的效果优于常用叶形指标,为叶形信息的自动化提取提供了新的思路。


关键词: 几何形态学,  标志点法,  烟草,  叶形,  机器学习 
Fig. 1 Classification of tobacco varieties and the corresponding leaf shapesSingle asterisk (*) indicates atypical class of tobacco variety.
Fig. 2 Flowchart of tobacco leaf pictures acquisition and processing
Fig. 3 Schematic diagrams of the selection of tobacco leaf landmarks and the results of GPA
Fig. 4 F values of different leaf shapes, leaf positions and their interaction effects at each landmark at the flowering stage
Fig. 5 Comparison of the results of the first principal component at the flowering stageA. Visualization of the first principal component results; B. Average leaf shapes of typical varieties; C. First principal component values of various types of leaves. SD: Standard deviation (the same as below).
Fig. 6 Comparison of the results of the second principal component at the flowering stageA. Visualization of the second principal component results; B. Average leaf shapes of typical varieties.
Fig. 7 Comparison of the results of the third principal component at the flowering stageA. Visualization of the third principal component results; B. Average leaf shapes of typical varieties.

叶位

Leaf position

叶形指标

Leaf shape indicator

机器学习算法

Machine learning method

不同指标均值

Means of

different indicators

决策树

DT

随机森林RF支持向量机SVM

全部叶片

All leaves

常用指标

Commonly used indicator

0.520.510.540.52
标志点 Landmark0.520.600.620.58

典型品种标志点

Typical variety landmark

0.640.690.730.69

上部叶

Superior leaves

常用指标

Commonly used indicator

0.580.550.590.57
标志点 Landmark0.600.650.670.64

典型品种标志点

Typical variety landmark

0.690.750.770.74

中部叶

Medial leaves

常用指标

Commonly used indicator

0.600.610.610.61
标志点 Landmark0.610.650.640.63

典型品种标志点

Typical variety landmark

0.690.740.740.72

下部叶

Inferior leaves

常用指标

Commonly used indicator

0.520.540.540.53
标志点 Landmark0.460.540.580.53

典型品种标志点

Typical variety landmark

0.670.680.710.68
Table 1 Discriminant accuracies of tobacco leaf shapes based on machine learning at the flowering stage
[1]   张宁,刘文萍.基于图像分析的植物叶片识别技术综述[J].计算机应用研究,2011,28(11):4001-4007. DOI:10.3969/j.issn.1001-3695.2011.11.001
ZHANG N, LIU W P. Plant leaf recognition technology based on image analysis[J]. Application Research of Computers, 2011, 28(11): 4001-4007. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-3695.2011.11.001
[2]   王晓峰,黄德双,杜吉祥,等.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006(3):190-193. DOI:10.3321/j.issn:1002-8331.2006.03.056
WANG X F, HUANG D S, DU J X, et al. Feature extraction and recognition for leaf images[J]. Computer Engineering and Applications, 2006(3): 190-193. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-8331.2006.03.056
[3]   WÄLDCHEN J, MÄDER P. Plant species identification using computer vision techniques: a systematic literature review[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 507-543. DOI:10.1007/s11831-016-9206-z
doi: 10.1007/s11831-016-9206-z
[4]   LEE S H, CHAN C S, MAYO S J, et al. How deep learning extracts and learns leaf features for plant classification[J]. Pattern Recognition, 2017, 71: 1-13. DOI:10.1016/j.patcog.2017.05.015
doi: 10.1016/j.patcog.2017.05.015
[5]   LARESE M G, NAMÍAS R, CRAVIOTTO R M, et al. Automatic classification of legumes using leaf vein image features[J]. Pattern Recognition, 2014, 47(1): 158-168. DOI:10.1016/j.patcog.2013.06.012
doi: 10.1016/j.patcog.2013.06.012
[6]   MUNISAMI T, RAMSURN M, KISHNAH S, et al. Plant leaf recognition using shape features and colour histogram with k-nearest neighbour classifiers[J]. Procedia Computer Science, 2015, 58: 740-747. DOI:10.1016/j.procs.2015.08.095
doi: 10.1016/j.procs.2015.08.095
[7]   郑一力,钟刚亮,王强,等.基于多特征降维的植物叶片识别方法[J].农业机械学报,2017,48(3):30-37. DOI:10.6041/j.issn.1000-1298.2017.03.004
ZHENG Y L, ZHONG G L, WANG Q, et al. Method of leaf identification based on multi-feature dimension reduction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 30-37. (in Chinese with English abstract)
doi: 10.6041/j.issn.1000-1298.2017.03.004
[8]   白明,杨星科,李静,等.几何形态学:关于形态定量比较的科学计算工具[J].科学通报,2014,59(10):887-894. DOI:10.1360/972012-1561
BAI M, YANG X K, LI J, et al. Geometric morphometrics, a super scientific computing tool in morphology comparison[J]. Chinese Science Bulletin, 2014, 59(10): 887-894. (in Chinese with English abstract)
doi: 10.1360/972012-1561
[9]   刘媛,吕佳,宋佳,等.基于几何形态测量学的植物鉴定方法[J].植物科学学报,2017,35(6):894-899. DOI:10.11913/PSJ.2095-0837.2017.60894
LIU Y, LÜ J, SONG J, et al. Plant species delimitation method based on geometric morphometrics[J]. Plant Science Journal, 2017, 35(6): 894-899. (in Chinese with English abstract)
doi: 10.11913/PSJ.2095-0837.2017.60894
[10]   CHITWOOD D H, OTONI W C. Morphometric analysis of Passiflora leaves: the relationship between landmarks of the vasculature and elliptical Fourier descriptors of the blade[J]. GigaScience, 2017, 6(1): giw008. DOI:10.1093/gigascience/giw008
doi: 10.1093/gigascience/giw008
[11]   FELDMANN M J, HARDIGAN M A, FAMULA R A, et al. Multi-dimensional machine learning approaches for fruit shape phenotyping in strawberry[J]. GigaScience, 2020, 9(5): giaa030. DOI:10.1093/gigascience/giaa030
doi: 10.1093/gigascience/giaa030
[12]   LIU Y, LI Y J, SONG J L, et al. Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae)‍[J]. Annals of Forest Science, 2018, 75(4): 90. DOI:10.1007/s13595-018-0770-2
doi: 10.1007/s13595-018-0770-2
[13]   WOEBBECKE D M, MEYER G E, VON BARGEN K, et al. Color indices for weed identification under various soil, residue, and lighting conditions[J]. Transactions of the ASAE, 1995, 38(1): 259-269. DOI:10.13031/2013.27838
doi: 10.13031/2013.27838
[14]   OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. DOI:10.1109/tsmc.1979.4310076
doi: 10.1109/tsmc.1979.4310076
[15]   FIRMANSYAH Z, HERDIYENI Y, SILALAHI B P, et al. Landmark analysis of leaf shape using polygonal approximation[C]. IOP Conference Series: Earth and Environmental Science, 2016, 31(1): 012018. DOI:10.1088/1755-1315/31/1/012018
doi: 10.1088/1755-1315/31/1/012018
[16]   ROHLF F J, SLICE D. Extensions of the Procrustes method for the optimal superimposition of landmarks[J]. Systematic Zoology, 1990, 39(1): 40-59. DOI:10.2307/2992207
doi: 10.2307/2992207
[17]   VISCOSI V, CARDINI A. Leaf morphology, taxonomy and geometric morphometrics: a simplified protocol for beginners[J]. PLoS ONE, 2011, 6(10): e25630. DOI:10.1371/journal.pone.0025630
doi: 10.1371/journal.pone.0025630
[18]   DRYDEN I L. Shapes: Statistical Shape Analysis, with Application in R Package Version 1.2.5[CP]. Chichester, UK: Wiley, 2019.
[19]   柴宏红,邵科,于超,等.基于三维点云的甜菜根表型参数提取与根型判别‍[J].农业工程学报,2020,36(10):181-188. DOI:10.11975/j.issn.1002-6819.2020.10.022
CHAI H H, SHAO K, YU C, et al. Extraction of phenotypic parameters and discrimination of beet root types based on 3D point cloud[J]. Transactions of the CSAE, 2020, 36(10): 181-188. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.10.022
[20]   BREIMAN L, FRIEDMAN J H, OLSHEN R A, et al. Classification and Regression Trees[M]. New York, USA: Routledge, 2017. DOI:10.1201/9781315139470
doi: 10.1201/9781315139470
[21]   BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. DOI:10.1023/a:1010933404324
doi: 10.1023/a:1010933404324
[22]   CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. DOI:10.1007/bf00994018
doi: 10.1007/bf00994018
[23]   KLINGENBERG C P. MorphoJ: an integrated software package for geometric morphometrics[J]. Molecular Ecology Resources, 2011, 11(2): 353-357. DOI:10.1111/j.1755-0998.2010.02924.x
doi: 10.1111/j.1755-0998.2010.02924.x
[24]   MALOOF J N, NOZUE K, MUMBACH M R, et al. LeafJ: an ImageJ plugin for semi-automated leaf shape measurement[J]. Journal of Visualized Experiments, 2013(71): 50028. DOI:10.3791/50028
doi: 10.3791/50028
[25]   ADAMS D C, ROHLF F J, SLICE D E. A field comes of age: geometric morphometrics in the 21st century[J]. Hystrix, the Italian Journal of Mammalogy, 2013, 24(1): 7-14. DOI:10.4404/hystrix-24.1-6283
doi: 10.4404/hystrix-24.1-6283
[26]   招启柏,顾世梁,俞惠梅,等.烟草叶片生长的动态分析[J].中国烟草学报,2004,10(2):12-20. DOI:10.3321/j.issn:1004-5708.2004.02.003
ZHAO Q B, GU S L, YU H M, et al. A dynamic analysis of tobacco leaf growth[J]. Acta Tabacaria Sinica, 2004, 10(2): 12-20. (in Chinese with English abstract)
doi: 10.3321/j.issn:1004-5708.2004.02.003
[27]   MIGICOVSKY Z, LI M, CHITWOOD D H, et al. Morphometrics reveals complex and heritable apple leaf shapes[J]. Frontiers in Plant Science, 2018, 8: 2185. DOI:10.3389/fpls.2017.02185
doi: 10.3389/fpls.2017.02185
[28]   XIAO S F, CHAI H H, SHAO K, et al. Image-based dynamic quantification of aboveground structure of sugar beet in field[J]. Remote Sensing, 2020, 12(2): 269. DOI:10.3390/rs12020269
doi: 10.3390/rs12020269
[1] Aobo JIA,Tianhao DONG,Yan ZHANG,Binglin ZHU,Yanguo SUN,Yuanhua WU,Yi SHI,Yuntao MA,Yan GUO. Recognition of field-grown tobacco plant type characteristics based on three-dimensional point cloud and ensemble learning[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 393-402.
[2] Gangshuan BAI,Wei GENG,Dengfeng HE. Effects of super absorbent polymer with different application rates on soil characteristics and flue-cured tobacco growth in Qinba mountain area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 343-354.
[3] CHEN Tingting, LI Xianfu, JIA Chunlei, AN Xueqin, ZHU Jun, XIAO Lizeng, DAI Xiumei, ZHANG Jiankui. Characteristics of new flue-cured tobacco strains developed from Yunyan87 mutants and their DNA fingerprint identification.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 179-189.
[4] YANG Xing1,2, HUANG Huagang1,3*, WANG Ling, SHEN Yan, LU Kouping, HAN Xuebo, WANG Hailong. Pyrolysis temperature optimization of biochar from tobacco stalk and its physicochemical characterization.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(2): 245-255.
[5] Wei Kesu, Hu Tingting, Li Delun, Tu Yonggao, Yu Liangji, Tu Guangjun. Effects of mixed application of effective microorganisms (EM) and soil amendments on agronomic characteristic and quality of flue-cured tobacco[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 439-448.
[6] Yang Zhili, Guo Chuanlong, Liu Lei, Wu Konghuan, Wang Lin, Li Kunzhi, Zhao Yan, Chen Limei. Overexpression of soybean SGF14a enhanced tolerance of transgenic tobacco plants to aluminum stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 285-292.
[7] Wu Shengjiang1, Dian Ruili2, Wei Kesu1, Li Delun1, Han Zhikang3, Lin Yechun1, Pan Wenjie1, Xie Yishu1*. Comparison of botanical characters and physiological characteristics among different flue-cured tobacco genotypes in
seedling transplanting period
[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(5): 511-518.
[8] Zhou Jiaping, Yang Chunyuan, Wu Chun, Wang Rengang, Shi Yuewei, Xie Shengdong, Wang Zhihong, Xu Haiming, Ren Xueliang . Genetic diversity and development of core collection in tobacco (Nicotiana tabacum L.) resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(4): 440-450.
[9] XU Lu lu,PAN Wen jie,ZHANG Guo ping. Investigation on difference in auto toxicity among tobacco cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(2): 119-126.
[10] CHENG Weishun,XU Qiufang,LI Fei,XU Youping,CAI Xinzhong. Establishment of a suitable control vector for Tobacco rattle virusinduced gene silencing analysis inNicotiana benthamiana[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(1): 10-20.