Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (3): 349-357    DOI: 10.3785/j.issn.1008-9209.2022.07.042
Plant protection     
Isolation and identification of tomato bacterial spot pathogen in Ningxia and screening of identification methods for disease resistance
Xiaohong LI1(),Xiaomin WANG1,2,3(),Wenxia DENG1,Kaibin WANG1,Meng GUO1,2,3,Guoxin CHENG1,2,3
1.School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China
2.Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan 750021, Ningxia, China
3.Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan 750021, Ningxia, China
Download: HTML   HTML (   PDF(6285KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to identify the pathogens causing tomato bacterial spot disease in Ningxia, tomato leaves infected with bacterial spot disease from Zhongwei and Wuzhong cities of Ningxia were used as the materials, and the strains were isolated using the conventional tissue isolation method, and their morphology, molecular biology and pathogenicity were identified. The four-factor and three-level orthogonal design of experiment [L9(34)] was conducted to screen the indoor resistance identification method at the seedling stage. The results showed that the colony morphologies of strain 1 isolated from Zhongwei City and strain 2 isolated from Wuzhong City were all milky white, full edge, opaque, smooth surface, producing green fluorescence, rod-shaped cells, and Gram staining was negative. The 16S rDNA sequences of both strain 1 and strain 2 were 99.93% similar to that of Pseudomonas syringae pv. tomato pathogenic variant KT783475.1. After reinoculation, brown lesions with yellow halos were presented on the leaves of the tomato, which was consistent with the natural symptoms. So, it was confirmed that the pathogen causing tomato bacterial spot disease in Ningxia was P. syringae pv. tomato. Under the treatment combination of inoculating seedlings at the four-leaf stage, the bacterial suspension concentration of 1.00×107 CFU/mL, with stem inoculation method and 96 h moisture, the disease index was 72.22%, which was significantly higher than that in other treatments, and thus it was considered to be the best indoor resistance identification method at the seedling stage for tomato bacterial spot disease. The above results will provide a theoretical basis for the prevention and control of tomato bacterial spot disease and resistance breeding in Ningxia.



Key wordstomato      bacterial spot disease      morphological identification      molecular biological identification     
Received: 04 July 2022      Published: 25 June 2023
CLC:  S436.412.19  
Corresponding Authors: Xiaomin WANG     E-mail: lxh0895@163.com;wangxiaomin_1981@163.com
Cite this article:

Xiaohong LI,Xiaomin WANG,Wenxia DENG,Kaibin WANG,Meng GUO,Guoxin CHENG. Isolation and identification of tomato bacterial spot pathogen in Ningxia and screening of identification methods for disease resistance. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 349-357.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2022.07.042     OR     https://www.zjujournals.com/agr/Y2023/V49/I3/349


宁夏地区番茄细菌性斑点病病原菌的分离鉴定及其抗病性鉴定方法的筛选

为明确引起宁夏地区番茄细菌性斑点病的病原菌,以宁夏中卫市和吴忠市感染细菌性斑点病的番茄病叶为材料,通过常规组织分离法分离菌株,对其形态学、分子生物学、致病性进行鉴定,并采用四因素三水平正交试验设计[L9(34)]筛选室内苗期抗病性鉴定方法。结果表明:菌株1(分离自宁夏中卫市的病原菌)、菌株2(分离自宁夏吴忠市的病原菌)的菌落形态均呈乳白色,全缘,不透明,表面光滑,产生绿色荧光,菌体杆状,革兰氏染色呈阴性;菌株1、菌株2的16S rDNA序列与丁香假单胞菌番茄致病变种KT783475.1的相似度为99.93%;回接后叶片产生褐色病斑,伴有黄色晕圈,与自然发病植株的症状一致。因此,确定引起宁夏地区番茄细菌性斑点病的病原菌是丁香假单胞菌番茄致病变种(Pseudomonas syringae pv. tomato)。在接种苗期为四叶期、菌悬液浓度为1.00×107 CFU/mL、接种方法为茎秆接种法、保湿时间为96 h的条件下,病情指数为72.22%,显著高于其他处理,是番茄细菌性斑点病室内苗期抗病性鉴定的最佳方法。本研究为宁夏地区番茄细菌性斑点病的防治及抗病育种提供了一定的理论依据。


关键词: 番茄,  细菌性斑点病,  形态学鉴定,  分子生物学鉴定 

因素

Factor

水平 Level
123
A苗期 Seedling stage三叶期 Three-leaf stage四叶期 Four-leaf stage五叶期 Five-leaf stage

B菌悬液浓度

Bacterial suspension concentration/(CFU/mL)

1.00×1071.00×1081.00×109

C接种方法

Inoculation method

针刺叶片法

Leaf acupuncturing method

茎秆接种法

Stem inoculation method

喷雾法

Nebulization

D保湿时间 Moisture holding time/h487296
Table 1 Factors and levels of resistance identification of tomato bacterial spot disease

处理

Treatment

A苗期

Seedling stage

B 菌悬液浓度

Bacterial suspension

concentration/(CFU/mL)

C 接种方法

Inoculation method

D 保湿时间

Moisture holding

time/h

1三叶期 Three-leaf stage1.00×107针刺叶片法 Leaf acupuncturing method48
2三叶期 Three-leaf stage1.00×108茎秆接种法 Stem inoculation method72
3三叶期 Three-leaf stage1.00×109喷雾法 Nebulization96
4四叶期 Four-leaf stage1.00×107茎秆接种法 Stem inoculation method96
5四叶期 Four-leaf stage1.00×108喷雾法 Nebulization72
6四叶期 Four-leaf stage1.00×109针刺叶片法 Leaf acupuncturing method48
7五叶期 Five-leaf stage1.00×107喷雾法 Nebulization72
8五叶期 Five-leaf stage1.00×108针刺叶片法 Leaf acupuncturing method96
9五叶期 Five-leaf stage1.00×109茎秆接种法 Stem inoculation method48
Table 2 Orthogonal design table for resistance identification of tomato bacterial spot disease at the seedling stage
Fig. 1 Symptoms of tomato disease samples collected in the field in NingxiaThe front (A) and back (B) tomato leaves infected with bacterial spot disease in Wuzhong City of Ningxia; and the stems (C) and fruits (D) of tomato infected with bacterial spot disease in Zhongwei City of Ningxia.
Fig. 2 Morphological characteristics of strain 1 and strain 2A. Strain 1 colony morphology; B. Strain 1 fluorescent reaction; C. Strain 2 colony morphology; D. Strain 2 fluorescent reaction; E. Strain 1 Gram staining reaction; F. Strain 2 Gram staining reaction.
Fig. 3 16S rDNA amplification (A) and specific amplification (B) of strain 1 and strain 2M: DNA marker; 1-2: PCR products of strain 1; 3-4: PCR products of strain 2.
Fig. 4 Partial multi-sequence alignment of Pseudomonas syringae pv. tomatoPst-1: Strain 1; Pst-2: Strain 2. The same as below.
Fig. 5 Phylogenetic tree of Pseudomonas syringae pv. tomatoStrains isolated in this study.
Fig. 6 Pathogenicity identification results of strain 1 and strain 2A-B. Strain 1; C. Strain 2. S: Lesion.

菌株

Strain

发病率

Incidence/%

病情指数

Disease index/%

菌株1 Strain 164.60±0.04a38.66±0.04a
菌株2 Strain 264.63±0.03a37.78±0.02a
Table 3 Analysis of incidence and disease index in patho-genicity identification of strain 1 and strain 2

处理

Treatment

发病率

Incidence/%

病情指数

Disease index/%

190.11±3.16a55.49±2.43b
233.33±19.24d8.33±4.81e
363.16±4.99c36.37±3.00cd
4100.00±0.00a72.22±2.78a
587.78±4.16ab54.15±4.59b
687.00±2.95ab48.31±2.67bc
771.44±5.16bc44.47±2.84bc
884.07±2.46ab52.46±2.78b
944.44±11.11d27.78±10.02d
Table 4 Comparisons of indoor resistance identification methods of tomato bacterial spot disease at the seedling stage
[1]   BARCHEBGER D W, OU J Y, LIN Y C, et al. Whole genome resequencing reveals novel loci associated with bacterial wilt resistance in tomato[J]. Acta Horticulturae, 2021, 1316: 49-52. DOI: 10.17660/ACTAHORTIC.2021.1316.7
doi: 10.17660/ACTAHORTIC.2021.1316.7
[2]   周鹏泽.银川市番茄白粉病病原菌鉴定、侵染过程观察及种质资源抗病性评价[D].宁夏,银川:宁夏大学,2021.
ZHOU P Z. Yinchuan tomato powdery mildew disease pathogen identification, infestation process observation and seed resources disease resistance evaluation[D]. Yinchuan, Ningxia: Ningxia University, 2021. (in Chinese with English abstract)
[3]   SHARMA S, BHATTARAI K. Progress in developing bacterial spot resistance in tomato[J]. Agronomy, 2019, 9(1): 26. DOI: 10.3390/agronomy9010026
doi: 10.3390/agronomy9010026
[4]   连佳杰.番茄灰叶斑病菌中关键致病因子NLP蛋白的功能研究[D].山东,泰安:山东农业大学,2022. DOI:10.3390/jof8050518
LIAN J J. Functional study of a key virulence factor NLP in gray leaf spot disease caused by Stemphylium lycopersici [D]. Tai’an, Shandong: Shandong Agricultural University, 2022. (in Chinese with English abstract)
doi: 10.3390/jof8050518
[5]   STAYER A, OCSOY I, TAN W, et al. Low concentrations of a silver-based nanocomposite to manage bacterial spot of tomato in the greenhouse[J]. Plant Disease, 2016, 100(7): 1460-1465. DOI: 10.1094/PDIS-05-15-0580-RE
doi: 10.1094/PDIS-05-15-0580-RE
[6]   柴阿丽,帕提古丽,郭威涛,等.番茄细菌性斑点病菌实时荧光定量PCR检测方法的建立及应用[J].园艺学报,2019,46(1):182-192. DOI:10.16420/j.issn.0513-353x.2018-0294
CHAI A L, PATIGULI, GUO W T, et al. Development and application of quantitative PCR for detection of Pseudomonas syringae pv. tomato [J]. Acta Horticulturae Sinica, 2019, 46(1): 182-192. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2018-0294
[7]   ADHIKARI P, ADHIKARI T B, LOUWS F J, et al. Advances and challenges in bacterial spot resistance breeding in tomato (Solanum lycopersicum L.)[J]. International Journal of Molecular Sciences, 2020, 21(5): 1734. DOI: 10.3390/ijms21051734
doi: 10.3390/ijms21051734
[8]   LIU X, MENG G, WANGM R, et al. Tomato SlPUB24 enhances resistance to Xanthomonas euvesicatoria pv. perfo-rans race T3[J]. Horticulture Research, 2021, 8: 30. DOI: 10.1038/s41438-021-00468-4
doi: 10.1038/s41438-021-00468-4
[9]   李志栋.内蒙古加工型番茄细菌性斑点病病原鉴定及种子带菌检测技术的研究[D].内蒙古,呼和浩特:内蒙古农业大学,2010.
LI Z D. Pathogen identification of bacterial spot of processing tomato in Inner Mongolia and methods for detecting bacterium in seeds[D]. Hohhot, Inner Mongolia: Inner Mongolia Agricultural University, 2010. (in Chinese with English abstract)
[10]   张海燕,张小芳,刘雅婷,等.云南番茄细菌性疮痂病病原菌鉴定及其生防研究[J].云南农业大学学报(自然科学),2016,31(2):218-225. DOI:10.16211/j.issn.1004-390X(n).2016.02.004
ZHANG H Y, ZHANG X F, LIU Y T, et al. Identification of tomato bacterial spot disease caused by X. euvesicatoria and its screening of biocontrol bacteria[J]. Journal of Yunnan Agricultural University (Natural Science), 2016, 31(2): 218-225. (in Chinese with English abstract)
doi: 10.16211/j.issn.1004-390X(n).2016.02.004
[11]   苗则彦,李颖,赵杨.辽宁省番茄细菌性斑疹病的病原鉴定[J].微生物学通报,2013,40(4):603-608. DOI:10.13344/j.microbiol.china.2013.04.004
MIAO Z Y, LI Y, ZHAO Y. Pathogen identification of bacterial speck of tomato in Liaoning[J]. Microbiology China, 2013, 40(4): 603-608. (in Chinese with English abstract)
doi: 10.13344/j.microbiol.china.2013.04.004
[12]   郭威涛,周俊国,吴长柳,等.加工番茄细菌性斑点病抗性评价体系的建立及微生物防治菌剂筛选[J].中国蔬菜,2018(5):51-56. DOI:10.19928/j.cnki.1000-6346.2018.05.010
GUO W T, ZHOU J G, WU C L, et al. Establishment of resistance evaluation system for bacterial spot of processing tomato and screening of biological agents[J]. China Vegetables, 2018(5): 51-56. (in Chinese with English abstract)
doi: 10.19928/j.cnki.1000-6346.2018.05.010
[13]   莫天利.番茄细菌性斑点病抗性鉴定方法研究及抗原的初步筛选[D].广西,南宁:广西大学,2017.
MO T L. Study on inoculation methods and preliminary screening of resistant sources of bacterial spot disease in tomato[D]. Nanning, Guangxi: Guangxi University, 2017. (in Chinese with English abstract)
[14]   PRSETON G M. Pseudomonas syringae pv. tomato: the right pathogen, of the right plant, at the right time[J]. Molecular Plant Pathology, 2010, 1(5): 263-275. DOI: 10.1046/j.1364-3703.2000.00036.x
doi: 10.1046/j.1364-3703.2000.00036.x
[15]   XIN X F, HE S Y. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants[J]. Annual Review of Phytopa-thology, 2013, 51(1): 473-498. DOI: 10.1146/annurev-phyto-082712-102321
doi: 10.1146/annurev-phyto-082712-102321
[16]   梁玉平.百色市田阳区樱桃番茄主要病害的发生及防治[J].现代农业科技,2021(5):143-144. DOI:10.3969/j.issn.1007-5739.2021.05.061
LIANG Y P. Occurrence and control of main diseases of cherry tomato in Tianyang District of Baise City[J]. Modern Agricultural Science and Technology, 2021(5): 143-144. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2021.05.061
[17]   范晓静,杨春泉,邱思鑫,等.番茄细菌性斑点病生防菌的鉴定、防病及定殖力[J].福建农林大学学报(自然科学版),2013,42(4):337-341. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2013.04.010
FAN X J, YANG C Q, QIU S X, et al. Identification of biocontrol bacterial strain and its antagonistic activity to tomato bacterial speck and colonizing ability in tomato[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2013, 42(4): 337-341. (in Chinese with English abstract)
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2013.04.010
[18]   康华军,温智浩,袁军海,等.新疆加工番茄细菌性斑点病与溃疡病复合侵染鉴定及防治建议[J].中国蔬菜,2018,352(6):83-86. DOI:10.19928/j.cnki.1000-6346.2018.06.020
KANG H J, WEN Z H, YUAN J H, et al. Identification and prevention recommendations of compound infection of bacterial spot disease and canker disease of processing tomato in Xinjiang[J]. China Vegetables, 2018, 352(6): 83-86. (in Chinese)
doi: 10.19928/j.cnki.1000-6346.2018.06.020
[19]   YANG Y X, WANG M M, YIN Y L, et al. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants[J]. BMC Genomics, 2015, 16: 120. DOI: 10.1186/s12864-015-1228-7
doi: 10.1186/s12864-015-1228-7
[20]   邓刚,屈星,陈秀蓉,等.甘肃番茄细菌性斑点病病原菌鉴定[J].植物保护,2008,34(5):47-51. DOI:10.3969/j.issn.0529-1542.2008.05.010
DENG G, QU X, CHEN X R, et al. Pathogen identification of bacterial leaf speck of tomato based on 16S rDNA, physiology and biochemistry in Gansu Province[J]. Plant Protection, 2008,34(5): 47-51. (in Chinese with English abstract)
doi: 10.3969/j.issn.0529-1542.2008.05.010
[21]   冒慧颖.番茄尖孢镰刀菌FolmiR1影响病原菌致病力的分子机制研究[D].江苏,扬州:扬州大学,2020.
MAO H Y. Molecular mechanism of FolmiR1 confers the pathogenicity of Fusarium oxysporum in tomato wilt disease[D]. Yangzhou, Jiangsu: Yangzhou University, 2020. (in Chinese with English abstract)
[22]   王安然,史军营,胡璋健,等.亚高温环境下番茄对细菌性斑点病病原菌的抗性变化及其机制研究[J].中国蔬菜,2021(11):37-44. DOI:10.19928/j.cnki.1000-6346.2021.1043
WANG A R, SHI J Y, HU Z J, et al. Effects and the underlying mechanism of sub-high temperature on plant resistance to Pseudomonas syringae in tomato[J]. China Vegetables, 2021(11): 37-44. (in Chinese with English abstract)
doi: 10.19928/j.cnki.1000-6346.2021.1043
[23]   赵廷昌,孙福在,宋文生.番茄细菌性斑点病病原菌鉴定[J].植物病理学报,2001,31(1):37-42. DOI:10.13926/j.cnki.apps.2001.01.006
ZHAO T C, SUN F Z, SONG W S. Pathogen identification of bacterial speck of tomato[J]. Acta Phytopathologica Sinica, 2001, 31(1): 37-42. (in Chinese with English abstract)
doi: 10.13926/j.cnki.apps.2001.01.006
[24]   王晓辉.新疆加工番茄细菌病害种类鉴定及防治研究[D].新疆,石河子:石河子大学,2006.
WANG X H. Study on identification of bacterial disease and control of processing tomato in Xinjiang[D]. Shihezi, Xinjiang: Shihezi University, 2006. (in Chinese with English abstract)
[25]   杨春泉.番茄细菌性斑点病的病原鉴定和内生生防菌的筛选[D].福建,福州:福建农林大学,2008.
YANG C Q. Pathogen identification of bacterial speck of tomato and screening of endophytic bacteria[D]. Fuzhou, Fujian: Fujian Agriculture and Forestry University, 2008. (in Chinese with English abstract)
[26]   刘冬旭,陈庆山,辛大伟,等.大豆细菌性斑点病抗感品种的筛选[J].黑龙江农业科学,2021(9):50-53. DOI:10.11942/j.issn1002-2767.2021.09.0050
LIU D X, CHEN Q S, XIN D W, et al. Screening of soybean varieties resistant and susceptible to bacterial spot[J]. Heilongjiang Agricultural Sciences, 2021(9): 50-53. (in Chinese with English abstract)
doi: 10.11942/j.issn1002-2767.2021.09.0050
[1] Shengyi BAI,Xiaomin WANG,Wenjuan LIU,Guoxin CHENG,Meng GUO,Wenkong YAO,Yanming GAO,Jianshe LI. Screening of reference genes for real-time fluorescent quantitative polymerase chain reaction (qRT-PCR) in tomato induced by different hormones[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 31-44.
[2] Tianci YANG,Pradya SOMBOON,Jing LIAO. Interactive multiplex key system to the genera in mosquito taxonomy of China (Diptera: Culicidae)[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 823-829.
[3] Hongji TAN,Yanming GAO,Jianshe LI,Wenlu WEI. Effects of different functional fertilizers on quality, yield and substrate environment of substrate-grown cherry tomatoes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(4): 434-442.
[4] Huiru WANG,Sihua YAN,Yanming GAO,Jianshe LI. Effects of different pruning patterns on fruit commodity, nutritional quality and yield of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 347-353.
[5] Xiaohui WANG,Kunpeng ZHOU. Research on recognition methods for red tomato image in the natural environment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 395-403.
[6] Zhongyan ZHANG,Luwei HU,Jiawei CHEN,Zhujun ZHU,Biao ZHU. Agronomic character identification and ornamental value evaluation of dwarf ornamental tomato germplasm resources[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 158-170.
[7] Fushun ZHENG,Xiaomin WANG,Guohua LI,Honglei LI,Pengze ZHOU,Lin WANG,Shengyi BAI,Peijun LIU,Xueyan ZHANG,Xinhua HU,Jinjun FU,Yanming GAO,Jianshe LI. Core collection construction of Ningxia tomato germplasm resources based on phenotypic traits[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 171-181.
[8] Ying LIANG,Yu SHI,Xin ZHAO,Longqiang BAI,Leiping HOU,Yi ZHANG. Effects of silicon on the growth and physiological properties of tomato seedlings under low phosphorus condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 151-160.
[9] TIAN Ping, LI Jianshe, GAO Yanming. Effects of brackish water irrigation on tomato yield and fruit sucrose metabolism in sunlight greenhouse[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 667-677.
[10] CHEN Shanshan, ZHOU Yekai, ZHANG Zhiming, ZHANG Min, WANG Qiaomei. Effects of carbon dioxide enrichment on fruit development and quality of cherry tomato[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 318-326.
[11] TAO Xiaoya, LI Jiayin, MAO Linchun. Effect of abscisic acid on wound-healing process in postharvest tomato fruit[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(3): 321-326.
[12] Liang Xifeng, Cai Yangyang, Wang Yongwei. Experiment on physical and mechanical properties of tomato seedling pot for automatic vegetable transplanter[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 616-622.
[13] Wang Yan, Pan Changtian, Wang Jie, Qin Li, Zou Tao, Lu Gang. Effects of gibberellin on tomato stigma exsertion and hormonerelated gene expression under moderate heat stress[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 449-457.
[14] Zhang Zhi, Hu Xiaohui, Zou Zhirong* . Prediction of grey mould disease from greenhouse tomato based on radical basis function neural network.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2014, 40(2): 197-202.
[15] WANG Junjun1, WU Xiaocheng2, DING Wenya1, ZHOU Yuanqing1, LIN Xianyong1*. Effects of nitrogen and potassium supply on fruit yield and nutritional quality of aeroponically grown tomato cultivars[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(5): 489-496.