Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2023, Vol. 49 Issue (1): 76-84    DOI: 10.3785/j.issn.1008-9209.2021.12.201
Food sciences     
Extraction, purification and chemical property analysis of sulfated polysaccharides from nine marine shellfishes
Xiaoyi WU1(),Zhiqiang HOU1,Lufeng YAN1,Kai ZHU1,Xingqian YE1,Shiguo CHEN1,2,3()
1.National-Local Joint Engineering Laboratory of Intelligent Food Processing Technology and Equipment/Zhejiang Provincial Key Laboratory of Agricultural Product Processing Technology Research/Southern Integrated Scientific Research Base of Fruit and Vegetable Preservation Technology/Zhejiang Provincial International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
3.Ningbo Research Institute, Zhejiang University, Ningbo 315100, Zhejiang, China
Download: HTML   HTML (   PDF(1980KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Sulfated polysaccharide is an important nutritional component in shellfishes. In this study, a rapid microextraction and purification process for sulfated polysaccharides from marine shellfishes was established and applied to nine different shellfishes. Types of glycosaminoglycans (GAGs) from nine species of edible shellfishes were qualitatively analyzed by their basic chemical components, molecular weights and monosaccharide compositions. The results showed that the method could rapidly separate and purify polysaccharides. The purified polysaccharides were single components with molecular weights ranging from 24 to 55 kDa. Analysis of monosaccharide composition and infra-red spectra results showed that sulfated polysaccharides had GAGs-like properties. The polysaccharide samples from Buccinidae and Trichomya exhibited the characteristics of chondroitin sulfate (CS), which were represented by Buccinum pemphigum and Perna viridis. The polysaccharide samples from Argopecten irradians showed heparin (HP) characteristics. This study provides a micro- and rapid pretreatment technology for the structural analysis of sulfated polysaccharides from edible shellfishes.



Key wordsmarine shellfishes      sulfated polysaccharides      glycosaminoglycans      microextraction      separation and purification     
Received: 20 December 2021      Published: 07 March 2023
CLC:  O629.12  
Corresponding Authors: Shiguo CHEN     E-mail: w15064501608@163.com;chenshiguo210@163.com
Cite this article:

Xiaoyi WU,Zhiqiang HOU,Lufeng YAN,Kai ZHU,Xingqian YE,Shiguo CHEN. Extraction, purification and chemical property analysis of sulfated polysaccharides from nine marine shellfishes. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(1): 76-84.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.12.201     OR     https://www.zjujournals.com/agr/Y2023/V49/I1/76


9种海洋贝类硫酸化多糖的提取、分离纯化及化学性质分析

硫酸化多糖是贝类中重要的营养功效成分。本研究建立了一种适合海洋贝类动物硫酸化多糖微量快速提取及分离纯化的方法,并应用于9种贝类;测定硫酸化多糖的基本化学组成、分子量和单糖组成,并基于此初步判定其所含的糖胺聚糖(glycosaminoglycans, GAGs)种类。结果表明,所建立的方法能够实现多糖的快速分离纯化,纯化后9种贝类的多糖均为单一组分,分子量为24~55 kDa。纯化多糖的单糖组成及红外光谱结果表明,9种贝类中的硫酸化多糖具有类糖胺聚糖特性:蛾螺科和壳菜蛤科多糖样品呈现硫酸软骨素(chondroitin sulfate, CS)的特征,分别以水泡蛾螺和翡翠贻贝为代表;海湾扇贝多糖样品呈现肝素(heparin, HP)的特征。本研究为食用贝类硫酸化多糖的结构解析提供了微量快速的前处理技术。


关键词: 海洋贝类,  硫酸化多糖,  糖胺聚糖,  微量提取,  分离纯化 

品种

Species

Family

采收时间

Collecting

time

采收地

Collecting

place

水泡蛾螺

Buccinum pemphigum

蛾螺科2020年5月辽宁大连

扁玉螺

Neverita didyma

扁玉螺科2020年5月辽宁丹东

菲律宾帘蛤

Ruditapes philippinarum

帘蛤科2020年8月江苏连云港

栉孔扇贝

Chlamys farreri

扇贝科2020年5月山东威海乳山

海湾扇贝

Argopecten irradians

扇贝科2020年5月江苏连云港

虾夷扇贝

Patinopecten yessoensis

扇贝科2020年5月辽宁大连

翡翠贻贝

Perna viridis

壳菜蛤科2020年5月江苏连云港

厚壳贻贝

Mytilus coruscus

贻贝科2020年7月浙江舟山

紫贻贝

Mytilus edulis

贻贝科2020年7月加拿大
Table 1 Shellfish species, collecting times and places

品种

Species

得率

Yield/%

w(总糖)

Total sugar

content/%

w(糖醛酸)

Uronic acid

content/%

w(硫酸基团)

Sulfate group

content/%

w(蛋白质)

Protein

content/%

分子量

Molecular weight/kDa

水泡蛾螺 Buccinum pemphigum2.8733.31±0.078.42±0.041.54±0.084.85±0.013 110.0
扁玉螺 Neverita didyma0.9635.43±0.0311.01±0.021.22±0.022.21±0.013 360.0
菲律宾帘蛤 Ruditapes philippinarum1.4742.56±0.0712.58±0.020.25±0.025.04±0.01533.0
栉孔扇贝 Chlamys farreri2.1923.80±0.0511.95±0.060.27±0.023.55±0.0241.1
海湾扇贝 Argopecten irradians2.0124.25±0.029.25±0.080.31±0.022.84±0.0341.6
虾夷扇贝 Patinopecten yessoensis2.3929.18±0.0312.90±0.050.02±0.026.93±0.0393.1
翡翠贻贝 Perna viridis0.5026.49±0.0917.54±0.030.36±0.023.72±0.0149.9
厚壳贻贝 Mytilus coruscus0.3531.10±0.0224.87±0.010.36±0.014.11±0.0150.1
紫贻贝 Mytilus edulis1.0620.16±0.0115.58±0.010.36±0.014.64±0.0128.7
Table 2 Chemical composition and molecular weight of crude polysaccharides from shellfishes

品种

Species

单糖占比 Monosaccharide ratio/%
FucGalNGlcNGalGlcGalAGlcA
水泡蛾螺 Buccinum pemphigum2.133.433.133.8682.612.382.46
扁玉螺 Neverita didyma7.963.533.615.3271.374.333.88
菲律宾帘蛤 Ruditapes philippinarum6.644.965.3122.9848.396.485.24
栉孔扇贝 Chlamys farreri13.2614.8611.9432.8627.08
海湾扇贝 Argopecten irradians10.4077.9011.70
虾夷扇贝 Patinopecten yessoensis11.9314.4012.9028.0918.7213.96
翡翠贻贝 Perna viridis5.787.376.067.4354.7910.168.41
厚壳贻贝 Mytilus coruscus4.896.595.637.2360.987.756.93
紫贻贝 Mytilus edulis7.0610.108.6610.1540.3812.6111.04
Table 3 Monosaccharide composition of crude polysaccharides from shellfishes
Fig. 1 Schematic diagram of stepwise separation and purification of crude polysaccharides

品种

Species

得率

Yield/%

w(总糖)

Total sugar content/%

w(糖醛酸)

Uronic acid content/%

w(蛋白质)

Protein content/%

分子量

Molecular weight/kDa

水泡蛾螺 Buccinum pemphigum11.2934.87±0.0339.17±0.074.18±0.0254.2
扁玉螺 Neverita didyma20.0747.09±0.0216.99±0.011.51±0.0124.3
菲律宾帘蛤 Ruditapes philippinarum27.3552.03±0.0433.21±0.025.04±0.0298.8
栉孔扇贝 Chlamys farreri56.5727.63±0.0629.19±0.102.14±0.0134.5
海湾扇贝 Argopecten irradians59.3345.47±0.0133.66±0.061.96±0.0132.2
虾夷扇贝 Patinopecten yessoensis36.9828.81±0.0336.81±0.032.64±0.0150.2
翡翠贻贝 Perna viridis60.3327.03±0.0136.04±0.040.94±0.0135.0
厚壳贻贝 Mytilus coruscus15.3035.46±0.0442.02±0.022.70±0.0139.4
紫贻贝 Mytilus edulis47.9831.24±0.0429.04±0.073.07±0.0127.6
Table 4 Chemical composition and molecular weight of purified polysaccharides from shellfishes
Fig. 2 High performance gel permeation chromatographies of purified polysaccharides from shellfishesA. Buccinum pemphigum; B. Neverita didyma; C. Ruditapes philippinarum; D. Chlamys farreri; E. Argopecten irradians; F. Patinopecten yessoensis; G. Perna viridis; H. Mytilus coruscus; I. Mytilus edulis. RID: Refractive index detector.

品种

Species

单糖占比 Monosaccharide ratio/%
FucGalNGlcNGalGlcGalAGlcA
水泡蛾螺 Buccinum pemphigum10.4112.1914.5918.2626.558.729.28
扁玉螺 Neverita didyma18.726.595.5022.6535.605.015.93
菲律宾帘蛤 Ruditapes philippinarum9.296.979.2949.837.669.697.27
栉孔扇贝 Chlamys farreri13.5416.9216.9921.5630.99
海湾扇贝 Argopecten irradians31.9425.6742.39
虾夷扇贝 Patinopecten yessoensis12.4719.978.9017.7123.7417.21
翡翠贻贝 Perna viridis10.4114.0712.1911.2214.1221.6716.32
厚壳贻贝 Mytilus coruscus7.527.524.874.1659.098.078.77
紫贻贝 Mytilus edulis9.109.4711.3015.4321.4418.4314.83
Table 5 Monosaccharide composition of purified polysaccharides from shellfishes
Fig. 3 Infra-red spectra of purified polysaccharides from shellfishes
[1]   YAN L F, WANG D L, YU Y L, et al. Fucosylated chondroitin sulfate 9-18 oligomers exhibit molecular size-independent antithrombotic activity while circulating in the blood[J]. ACS Chemical Biology, 2020, 15(8): 2232-2246. DOI: 10.1021/acschembio.0c00439
doi: 10.1021/acschembio.0c00439
[2]   XIONG Q P, SONG Z Y, HU W H, et al. Methods of extraction, separation, purification, structural characterization for polysaccharides from aquatic animals and their major pharmacological activities[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(1): 48-63. DOI: 10.1080/10408398.2018.1512472
doi: 10.1080/10408398.2018.1512472
[3]   WANG L C, DI L Q, LI J S, et al. Elaboration in type, primary structure, and bioactivity of polysaccharides derived from mollusks[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(7): 1091-1114. DOI: 10.1080/10408398.2017.1392289
doi: 10.1080/10408398.2017.1392289
[4]   CESAERTTI M, LUPPI E, MACCARI F, et al. Isolation and characterization of a heparin with high anticoagulant activity from the clam Tapes phylippinarum: evidence for the presence of a high content of antithrombinⅢbinding site[J]. Glyco-biology, 2004, 14(12): 1275-1284. DOI: 10.1093/glycob/cwh128
doi: 10.1093/glycob/cwh128
[5]   曹九零.20种海洋贝类中多糖成分的分析[D].辽宁,大连:大连工业大学,2015.
CAO J L. Analysis of polysaccharides from 20 species of marine shellfishes[D]. Dalian, Liaoning: Dalian Polytechnic University, 2015. (in Chinese with English abstract)
[6]   VOLPI N, MACCARI F. Structural characterization and antithrombin activity of dermatan sulfate purified from marine clam Scapharca inaequivalvis [J]. Glycobiology, 2009, 19(4): 356-367. DOI: 10.1093/glycob/cwn140
doi: 10.1093/glycob/cwn140
[7]   ZENG X T, LI P Y, CHEN X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides[J]. International Journal of Biological Macromolecules, 2019, 126: 867-876. DOI: 10.1016/j.ijbiomac.2018.12.222
doi: 10.1016/j.ijbiomac.2018.12.222
[8]   ZHANG D H, WANG C, WU H X, et al. Three sulphated polysaccharides isolated from the mucilage of mud snail, Bullacta exarata philippi: characterization and antitumour activity[J]. Food Chemistry, 2013, 138(1): 306-314. DOI: 10.1016/j.foodchem.2012.10.061
doi: 10.1016/j.foodchem.2012.10.061
[9]   LI G Y, CHEN S G, WANG Y M, et al. A novel glycosaminoglycan-like polysaccharide from abalone Haliotis discus hannai Ino: purification, structure identification and anticoagulant activity[J]. International Journal of Biological Macromolecules, 2011, 49(5): 1160-1166. DOI: 10.1016/j.ijbiomac.2011.09.017
doi: 10.1016/j.ijbiomac.2011.09.017
[10]   TANG W, LIU D, YIN J Y, et al. Consecutive and progressive purification of food-derived natural polysaccharide: based on material, extraction process and crude polysaccharide[J]. Trends in Food Science & Technology, 2020, 99: 76-87. DOI: 10.1016/j.tifs.2020.02.015
doi: 10.1016/j.tifs.2020.02.015
[11]   LI J H, LI S, ZHI Z J, et al. Depolymerization of fucosylated chondroitin sulfate with a modified fenton-system and anticoagulant activity of the resulting fragments[J]. Marine Drugs, 2016, 14(9): 170. DOI: 10.3390/md14090170
doi: 10.3390/md14090170
[12]   LIU Z L, MASUKO S, SOLAKYILDIRIM K, et al. Glycosaminoglycans of the porcine central nervous system[J]. Biochemistry, 2010, 49(45): 9839-9847. DOI: 10.1021/bi101305b
doi: 10.1021/bi101305b
[13]   LI G Y, LI L Y, JOO E J, et al. Glycosaminoglycans and glycolipids as potential biomarkers in lung cancer[J]. Glycoconjugate Journal, 2017, 34(5): 661-669. DOI: 10.1007/s10719-017-9790-7
doi: 10.1007/s10719-017-9790-7
[14]   DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry, 1956, 28(3): 350-356.
[15]   BLUMENKRANTZ N, ASBOE-HANSEN G. New method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973, 54 (2): 484-489.
[16]   ZARĘBA M, BOBER A, KORYTOWSKI W, et al. The effect of a synthetic neuromelanin on yield of free hydroxyl radicals generated in model systems[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 1995, 1271(2/3): 343-348. DOI: 10.1016/0925-4439(95)00058-C
doi: 10.1016/0925-4439(95)00058-C
[17]   SHIHABI Z K, DYER R D. Protein analysis with bicinchoninic acid[J]. Annals of Clinical and Laboratory Science, 1988, 18(3): 235-239.
[18]   WEI C Y, ZHANG Y, ZHANG H, et al. Physicochemical properties and conformations of water-soluble peach gums via different preparation methods[J]. Food Hydrocolloids, 2019, 95: 571-579. DOI: 10.1016/j.foodhyd.2018.03.049
doi: 10.1016/j.foodhyd.2018.03.049
[19]   LIU B, LIU H M, AI C Q, et al. Distribution of uronic acid-containing polysaccharides in 5 species of shellfishes[J]. Carbohydrate Polymers, 2017, 164: 195-199. DOI: 10.1016/j.carbpol.2017.01.099
doi: 10.1016/j.carbpol.2017.01.099
[20]   ZHANG H, YE L, WANG K W. Structural characterization and anti-inflammatory activity of two water-soluble polysac-charides from Bellamya purificata [J]. Carbohydrate Polymers, 2010, 81(4): 953-960. DOI: 10.1016/j.carbpol.2010.04.011
doi: 10.1016/j.carbpol.2010.04.011
[21]   栾晓红.两种海蛏多糖的提取、分离和结构分析[D].山东,青岛:中国海洋大学,2015.
LUAN X H. Extraction, separation and structural charac-terization of polysaccharides from two species of Solenidae [D]. Qingdao, Shandong: Ocean University of China, 2015. (in Chinese with English abstract)
[22]   殷秀红.紫贻贝(Mytilus edulis Linnaeus)多糖的提取分离及结构研究[D].山东,青岛:中国海洋大学,2011.
YIN X H. Extraction, isolation and structural characteri-zation of polysaccharides from Mytilus edulis Linnaeus[D]. Qingdao, Shandong: Ocean University of China, 2011. (in Chinese with English abstract)
[23]   SHI F L, LIU Z C, LIU Y, et al. Comparison of physico-chemical characteristics and macrophage immunostimulatory activities of polysaccharides from Chlamys farreri [J]. Marine Drugs, 2020, 18(8): 429. DOI: 10.3390/md18080429
doi: 10.3390/md18080429
[24]   CAO C Y, SONG S, LIU B, et al. Distribution analysis of polysaccharides comprised of uronic acid-hexose/hexosamine repeating units in various shellfish species[J]. Glycoconjugate Journal, 2018, 35(6): 537-545. DOI: 10.1007/s10719-018-9846-3
doi: 10.1007/s10719-018-9846-3
[25]   OKAMOTO Y, HIGASHI K, LINHARDT R J, et al. Comprehensive analysis of glycosaminoglycans from the edible shellfish[J]. Carbohydrate Polymers, 2018, 184: 269-276. DOI: 10.1016/j.carbpol.2017.12.076
doi: 10.1016/j.carbpol.2017.12.076
[26]   CAO J L, WEN C R, LU J J, et al. Characterization of acidic polysaccharides from the mollusks through acid hydrolysis[J]. Carbohydrate Polymers, 2015, 130: 268-274. DOI: 10.1016/j.carbpol.2015.05.006
doi: 10.1016/j.carbpol.2015.05.006
[27]   SONG S, WANG L L, WANG L L, et al. Structural characterization and anticoagulant activity of two polysac-charides from Patinopecten yessoensis viscera[J]. International Journal of Biological Macromolecules, 2019, 136: 579-585. DOI: 10.1016/j.ijbiomac.2019.06.116
doi: 10.1016/j.ijbiomac.2019.06.116
[28]   WU M Y, XU S M, ZHAO J H, et al. Physicochemical characteristics and anticoagulant activities of low molecular weight fractions by free-radical depolymerization of a fucosylated chondroitin sulphate from sea cucumber Thelenata ananas [J]. Food Chemistry, 2010, 122(3): 716-723. DOI: 10.1016/j.foodchem.2010.03.042
doi: 10.1016/j.foodchem.2010.03.042
[29]   SUN Y J, GONG G P, GUO Y M, et al. Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera [J]. International Journal of Biological Macromolecules, 2018, 108: 314-323. DOI: 10.1016/j.ijbiomac.2017.12.016
doi: 10.1016/j.ijbiomac.2017.12.016
[30]   SEEDEVI P, MOOVENDHAN M, VAIRAMANI S, et al. Structural characterization and biomedical properties of sulfated polysaccharide from the gladius of Sepioteuthis lessoniana (Lesson, 1831)[J]. International Journal of Bio-logical Macromolecules, 2016, 85: 117-125. DOI: 10.1016/j.ijbiomac.2015.12.066
doi: 10.1016/j.ijbiomac.2015.12.066
[31]   XIONG Q P, HU Y D, YE X Y, et al. Extraction, purification and characterization of sulphated polysaccharide from Bellamya quadrata and its stabilization roles on atherosclerotic plaque[J]. International Journal of Biological Macromolecules, 2020, 152: 314-326. DOI: 10.1016/j.ijbiomac.2020.02.243
doi: 10.1016/j.ijbiomac.2020.02.243
[32]   HE Z C, ZHOU L T, LIN L S, et al. Structure and heparanase inhibitory activity of a new glycosaminoglycan from the slug Limacus flavus [J]. Carbohydrate Polymers, 2019, 220: 176-184. DOI: 10.1016/j.carbpol.2019.05.066
doi: 10.1016/j.carbpol.2019.05.066
[1] Ranran ZHENG,Jingzhi WU,Zhijia GU,Wenbin YUAN,Hongzhi WU. Study on the floral scent components of Lilium amoenum with rose fragrance and Lilium bakerianum var. rubrum with orange fragrance[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 32-42.
[2] Junxing LI,Yujuan ZHONG,Jianning LUO,Xiaoli HE,Hao GONG,Haibin WU,Shijuan YAN,Hexun HUANG. Detection of volatile flavor compounds in leaf of Xiangyu pumpkin using headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 175-180.
[3] Xu Yuanjun, He Jing, Jia Lingyan, Wu Yuanyuan, Tu Youying. Differentiation of aroma compositions in different regions and special varieties of black tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 323-330.