Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (3): 336-350    DOI: 10.3785/j.issn.1008-9209.2021.04.072
Resource utilization & environmental protection     
Simultaneous determination of multiple persistent organic pollutants in soil by ultrasonic extract-gas chromatography-mass spectrometry
Hao ZHANG1(),Ronglang HUANG2,Minyan CHEN2,Jun JIANG2,Lan YANG1,Jian CHEN3,Zhijiang Lü1,Min LIAO1,Haizhen WANG1(),Jianming XU1
1.Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2.Hangzhou Service Quality Testing Technology Co. , Ltd. , Hangzhou 311300, China
3.Bureau of Agriculture and Rural Affairs and Water Resource of Wenling, Taizhou 317500, Zhejiang, China
Download: HTML   HTML (   PDF(1903KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

A method for simultaneous extraction, purification, and determination of persistent organic pollutants (POPs) in soil, such as polychlorinated biphenyls, polybrominated diphenyl ethers, and polycyclic aromatic hydrocarbons, was developed in this study. The optimum conditions for extraction and purification were as follows: Soil samples were extracted ultrasonically three times with acetone/n-hexane (1∶?1, by volume), followed by purification with Florisil solid-phase extraction column, and eluted by 12 mL of n-hexane/dichloromethane (9∶1, by volume) mixture solution. The eluant was concentrated by gentle N2 streams and finally quantified by gas chromatography-mass spectrometry (GC-MS) with PCB209 as the internal standard. Except for 2, 2′, 3, 3′, 4, 4′, 5, 5′, 6, 6′-decabromodiphenyl ether (BDE209), the other 41 POPs were efficiently separated within 23.83 min. Excellent linearity was observed in the concentration range of 20-1 000 μg/L for all POPs with the coefficients of determination (R2) of 0.997 5-0.999 9. The detection limits of 42 POPs were 0.04-1.19 ng/g, and the spiked recoveries ranged from 71.04% to 120.89% with relative standard deviations of 0.88%-6.29%, and intra- and inter-day reproducibility variations were less than 11%. In conclusion, this method greatly reduces time and workload and is characterized by simple operation, good accuracy, and high sensitivity. It can be widely applied to the determination and analysis of POPs in soil, such as e-waste disposal site soil, which will facilitate further studies on the fate and risk assessment of POPs.



Key wordspolychlorinated biphenyls      polybrominated diphenyl ethers      polycyclic aromatic hydrocarbons      ultrasonic extract      solid phase extraction purification      gas chromatography-mass spectrometry     
Received: 07 April 2021      Published: 07 July 2022
CLC:  X 53  
Corresponding Authors: Haizhen WANG     E-mail: 21914148@zju.edu.cn;wanghz@zju.edu.cn
Cite this article:

Hao ZHANG,Ronglang HUANG,Minyan CHEN,Jun JIANG,Lan YANG,Jian CHEN,Zhijiang Lü,Min LIAO,Haizhen WANG,Jianming XU. Simultaneous determination of multiple persistent organic pollutants in soil by ultrasonic extract-gas chromatography-mass spectrometry. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 336-350.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.04.072     OR     https://www.zjujournals.com/agr/Y2022/V48/I3/336


超声提取-气相色谱-质谱法对土壤中多种类持久性有机污染物的同时测定

本研究建立了同时提取、同时净化、同时测定土壤中多氯联苯、多溴二苯醚和多环芳烃等多种类持久性有机污染物(persistent organic pollutants, POPs)的方法,其提取和净化的最佳条件为:以V(丙酮)∶V(正己烷)=1∶1的混合溶液作为提取溶剂,超声提取3次;净化小柱为弗罗里硅土固相萃取柱;以V(正己烷)∶V(二氯甲烷)=9∶1的混合溶液作为洗脱溶剂,用量12 mL。经氮吹浓缩后,利用气相色谱-质谱联用法测定,内标法定量。结果表明:除2,2′,3,3′,4,4′,5,5′,6,6′-十溴二苯醚(BDE209)外,其余41种POPs仅在23.83 min内就得到很好的分离。42种目标POPs均在20~1 000 μg/L范围内线性关系良好,决定系数(R2)为0.997 5~0.999 9;方法的检出限为0.04~1.19 ng/g,加标回收率为71.04%~120.89%,相对标准偏差为0.88%~6.29%,日内重复性和日间重现性变化均小于11%。该方法大大减少了检测时间和工作量,并且操作简单、准确性好、灵敏度高,可大规模应用于废旧电器拆解场地等的土壤样品中POPs的测定分析,对POPs的检测及其环境行为研究等具有重要意义。


关键词: 多氯联苯,  多溴二苯醚,  多环芳烃,  超声提取,  固相萃取净化,  气相色谱-质谱联用 

峰号

Peak number

持久性有机污染物

Persistent organic pollutant

保留时间

Retention time/min

定性离子

Qualitative ion (m/z)

定量离子

Quantitative ion (m/z)

1萘 NAP7.458128,127,129128
2苊烯 ANY9.396152,151,153152
3苊 ANA9.615154,153,152154
4芴 FLU10.238166,165,167166
5菲 PHE11.398178,179,176178
6蒽 ANT11.462178,179,176178
72,4,4′-三氯联苯 PCB2811.851256,258,186256
82,2′,5,5′-四氯联苯 PCB5212.186292,290,220292
9荧蒽 FLT12.863202,200,203,101,100202
102,2′,4,5,5′-五氯联苯 PCB10113.056326,328,254326
11芘 PYR13.136202,200,203,101,100202
123,4,4′,5-四氯联苯 PCB8113.348292,290,220292
133,3′,4,4′-四氯联苯 PCB7713.453292,290,220292
142′,3,4,4′,5-五氯联苯 PCB12313.685326,328,254326
152,3′,4,4′,5-五氯联苯 PCB11813.709326,328,254326
162,4,4′-三溴二苯醚 BDE2813.747407.8,405.8,403.8407.8
172,3,4,4′,5-五氯联苯 PCB11413.843326,328,254326
182,2′,4,4′,5,5′-六氯联苯 PCB15313.946360,362,290360
192,3,3′,4,4′-五氯联苯 PCB10514.018326,328,254326
202,2′,3,4,4′,5′-六氯联苯 PCB13814.282360,362,290360
213,3′,4,4′,5-五氯联苯 PCB12614.396326,328,254326
222,3′,4,4′,5,5′-六氯联苯 PCB16714.611360,362,290360
23苯并(a)蒽 BaA14.899228,226,229,114,113228
242,3,3,4,4′,5′-六氯联苯 PCB15614.921360,362,290360
25? CHR14.971228,226,229,114,113228
262,3,3′,4,4′,5′-六氯联苯 PCB15714.992360,362,290360
272,2′,3,4,4′,5,5′-七氯联苯 PCB18015.124394,396,324394
282,2′,4,4′-四溴二苯醚 BDE4715.207485.8,483.8,487.8485.8
293,3′,4,4′,5,5′-六氯联苯 PCB16915.433360,362,288360
302,3,3′,4,4′,5,5′-七氯联苯 PCB18915.960394,396,324394
312,2′,4,4′,6-五溴二苯醚 BDE10016.531565.7,563.7,561.7565.7
322,2′,4,4′,5-五溴二苯醚 BDE9916.920565.7,563.7,561.7565.7
33苯并(b)荧蒽 BbFA16.944252,253,250,251252
34苯并(k)荧蒽 BkFA16.993252,253,250,251252
35苯并(a)芘 BaP17.574252,253,250,251252
362,2′,4,4′,5,6′-六溴二苯醚 BDE15418.100643.6,641.6,645.6643.6
372,2′,4,4′,5,5′-六溴二苯醚 BDE15318.663643.6,641.6,645.6643.6
38茚并(1,2,3-cd)芘 IPY19.653276,277,275,274276
39二苯并(a,h)蒽 DBA19.700278,276,279,138278
40苯并(g,h,i)苝 BPE20.091276,275,274,138276
412,2′,3,4,4′,5′,6-七溴二苯醚 BDE18320.449721.6,719.6,563.6721.6
422,2′,3,3′,4,4′,5,5′,6,6′-十溴二苯醚 BDE20910.843799.4,797.4,795.4799.4
Table 1 Retention time, qualitative and quantitative ions of 42 persistent organic pollutants (PCBs, PBDEs, PAHs)
Fig. 1 Total ion chromatograms of 41 persistent organic pollutants (A) and BDE209 (B) in the standard samples
Fig. 2 Effects of different extraction methods on the recoveries of PCBs (A), PBDEs (B) and PAHs (C) in soilPlease see the Table 1 for details of the names of pollutants represented by abbreviations, and the same as below.
Fig. 3 Effects of different purification SPE columns on the recoveries of PCBs (A), PBDEs (B) and PAHs (C) in soil
Fig. 4 Effects of different elution solvents on the recoveries of PCBs (A), PBDEs (B) and PAHs (C) in soil
Fig. 5 Effects of different elution solvent volumes on the recoveries of PCBs (A), PBDEs (B) and PAHs (C) in soilThe elution solvent is n-hexane/dichloromethane (9∶1, by volume) mixture solution.

峰号

Peak

number

持久性有机污染物

Persistent organic

pollutant

标准曲线方程

Standard curve

equation

决定系数

R2

检出限

Detection

limit/(ng/g)

测定下限

Quantification limit/

(ng/g)

1NAPy =17.20x+1.7080.998 90.311.24
2ANYy =13.20x+0.3500.999 80.291.16
3ANAy =9.950x+0.8220.998 60.100.40
4FLUy =11.16x+0.6240.999 60.190.76
5PHEy =12.52x-1.1380.998 90.341.36
6ANTy =17.76x+2.2250.998 90.040.16
7PCB28y =5.761x+0.3330.999 40.331.32
8PCB52y =3.821x+0.2570.999 30.321.28
9FLTy =14.86x+0.2510.999 80.261.04
10PCB101y =3.419x+0.1880.999 30.411.64
11PYRy =16.04x+0.2660.999 90.582.32
12PCB81y =5.018x-0.0190.999 90.220.88
13PCB77y =5.367x+0.1500.999 80.692.76
14PCB123y =3.653x+0.0600.998 00.261.04
15PCB118y =5.333x+0.1520.998 40.160.64
16BDE28y =1.346x-0.0380.999 10.220.88
17PCB114y =4.417x+0.0430.999 10.391.56
18PCB153y =3.003x+0.1250.999 50.451.80
19PCB105y =4.377x+0.1320.999 70.220.88
20PCB138y =2.538x+0.1250.999 60.542.16
21PCB126y =4.150x+0.0520.999 90.281.12
22PCB167y =3.204x+0.0950.999 80.150.60
23BaAy =9.928x-1.1220.998 00.642.56
24PCB156y =3.598x-0.2150.998 90.261.04
25CHRy =13.86x+0.9710.999 20.240.96
26PCB157y =3.497x+0.1390.999 20.512.04
27PCB180y =2.127x+0.0800.999 60.371.48
28BDE47y =1.079x-0.0580.998 90.110.44
29PCB169y =3.011x+0.0430.999 80.291.16
30PCB189y =2.250x+0.0050.999 30.281.12
31BDE100y =0.509x-0.0070.998 20.180.72
32BDE99y =0.396x-0.0320.998 10.251.00
33BbFAy =9.760x-1.2060.998 00.622.48
34BkFAy =14.40x+1.0040.998 30.471.88
35BaPy =9.868x+0.1360.999 50.240.96
36BDE154y =0.284x-0.0260.998 30.150.60
37BDE153y =0.229x-0.0240.998 00.180.72
38IPYy =13.76x+0.1340.999 80.773.08
39DBAy =11.32x-0.0480.999 70.210.84
40BPEy =12.57x+0.3390.999 61.194.76
41BDE183y =0.085x-0.0060.999 50.170.68
42BDE209y =0.008x-0.0010.997 50.973.88
Table 2 Standard curve equations, coefficients of determination (R2), detection limits and quantification limits of 42 persistent organic pollutants (PCBs, PBDEs, PAHs)

峰号

Peak number

持久性有机污染物

Persistent organic pollutant

土壤加标回收率

Spiked recovery in soil/%

20 μg/kg40 μg/kg80 μg/kg
1NAP73.88±2.8174.25±2.1671.04±2.37
2ANY84.31±1.5583.32±1.5082.03±1.30
3ANA83.76±1.2291.65±1.4681.43±2.31
4FLU84.84±2.2084.10±3.8482.87±1.41
5PHE99.10±6.23100.28±2.4999.69±2.18
6ANT90.17±2.2989.72±3.0490.60±1.14
7PCB2887.40±1.3384.60±4.5483.23±3.55
8PCB5285.56±2.3786.00±4.6582.42±1.16
9FLT94.17±3.21104.81±4.4893.98±1.63
10PCB10191.82±3.1686.95±3.5482.21±1.32
11PYR103.02±3.06104.94±4.1989.50±1.71
12PCB8195.69±2.8991.40±3.9185.05±1.28
13PCB7788.67±2.5588.58±4.1784.36±1.71
14PCB123111.79±4.5384.93±3.1780.47±2.20
15PCB11887.51±2.5797.64±4.5589.73±1.40
16BDE28107.70±4.1797.16±2.6692.99±2.11
17PCB11495.95±3.1388.98±3.1283.31±2.21
18PCB15394.32±3.1089.42±3.5583.01±1.73
19PCB10596.15±2.7290.35±3.7684.89±1.78
20PCB13897.27±3.4391.25±2.3787.49±1.47
21PCB12698.55±2.8990.93±3.1985.95±1.03
22PCB16797.80±3.6990.96±2.6583.99±2.18
23BaA81.84±4.7394.91±4.6589.11±1.63
24PCB156101.57±3.3392.57±3.6184.26±1.82
25CHR90.58±2.92105.81±3.8887.87±1.79
26PCB15793.29±3.5088.17±3.3284.15±1.25
27PCB18098.44±3.5494.25±3.7584.51±1.48
28BDE47108.31±3.9699.02±2.8293.25±2.35
29PCB16997.65±2.8493.49±3.8587.48±1.59
30PCB189101.08±3.1796.48±4.0588.21±1.50
31BDE100108.91±3.9196.56±3.1488.93±2.16
32BDE99109.63±4.2098.84±3.6291.32±1.37
33BbFA95.25±3.4995.47±1.6586.70±3.52
34BkFA87.21±2.74101.80±5.2488.25±2.09
35BaP91.44±3.9999.44±4.8688.89±1.31
36BDE154103.27±3.8895.25±2.7291.27±1.31
37BDE153104.17±3.3893.03±4.2689.45±1.33
38IPY91.84±3.12101.65±5.7083.63±2.06
39DBA84.12±4.4698.64±4.8785.12±2.23
40BPE82.60±1.97101.83±4.0082.61±3.51
41BDE18391.70±3.3791.17±2.5885.92±2.26
42BDE209120.89±2.07115.72±0.88116.00±1.12
Table 3 Spiked recoveries in soil of 42 persistent organic pollutants (PCBs, PBDEs, PAHs)

持久性有机污染物

Persistent organic pollutant

1#2#

持久性有机污染物

Persistent organic pollutant

1#2#
NAPNDNDPCB167NDND
ANYNDNDBaA774.54±5.99ND
ANANDNDPCB156NDND
FLUNDNDCHR1 187.50±9.80ND
PHE393.38±7.90NDPCB157NDND
ANTNDNDPCB1807.08±0.25ND
PCB2895.07±1.4222.11±0.86BDE4716.96±0.083.53±0.03
PCB52107.67±0.5612.18±0.43PCB169NDND
FLT471.59±5.26NDPCB189NDND
PCB10169.16±1.436.48±0.22BDE100NDND
PYR580.21±4.77NDBDE9936.68±0.195.46±0.03
PCB81NDNDBbFA1 151.77±15.657.43±0.25
PCB77ND3.18±0.15BkFA550.68±8.03ND
PCB12342.25±1.305.58±0.07BaP1 392.87±4.560.43±0.05
PCB11851.96±1.446.95±0.10BDE15435.43±0.233.93±0.44
BDE2821.24±0.122.50±0.06BDE15340.57±0.434.74±0.01
PCB114NDNDIPY1 210.87±7.9910.06±0.19
PCB15327.16±0.731.91±0.07DBA417.16±6.93ND
PCB105ND4.27±0.31BPE2 046.34±8.99ND
PCB13865.06±1.894.46±0.19BDE18367.97±0.59ND
PCB126NDNDBDE209372.11±7.55276.16±1.76
Table 4 Detection results of 42 persistent organic pollutants (PCBs, PBDEs, PAHs) in e-waste disposal site soils
[1]   HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1): 1-15. DOI:10.1016/j.jhazmat.2009.03.137
doi: 10.1016/j.jhazmat.2009.03.137
[2]   RAHMAN F, LANGFORD K H, SCRIMSHAW M D, et al. Polybrominated diphenyl ethers (PBDE) flame retardants[J]. The Science of the Total Environment, 2001, 275(1/2/3): 1-17. DOI:10.1016/S0048-9697(01)00852-X
doi: 10.1016/S0048-9697(01)00852-X
[3]   HOGARH J N, SEIKE N, KOBARA Y, et al. Source characterization and risk of exposure to atmospheric polychlorinated biphenyls (PCBs) in Ghana[J]. Environmental Science and Pollution Research, 2018, 25(17): 16316-16324. DOI:10.1007/s11356-018-2090-3
doi: 10.1007/s11356-018-2090-3
[4]   AKORTIA E, OLUKUNLE O I, DASO A P, et al. Soil concentrations of polybrominated diphenyl ethers and trace metals from an electronic waste dump site in the Greater Accra Region, Ghana: implications for human exposure[J]. Ecotoxicology and Environmental Safety, 2017, 137: 247-255. DOI:10.1016/j.ecoenv.2016.12.008
doi: 10.1016/j.ecoenv.2016.12.008
[5]   YADAV I C, DEVI N L, LI J, et al. Environmental concentration and atmospheric deposition of halogenated flame retardants in soil from Nepal: source apportionment and soil-air partitioning[J]. Environment Pollution, 2018, 233: 642-654. DOI:10.1016/j.envpol.2017.10.104
doi: 10.1016/j.envpol.2017.10.104
[6]   ZHANG T, HUANG Y R, CHEN S J, et al. PCDD/Fs, PBDD/Fs, and PBDEs in the air of an e-waste recycling area (Taizhou) in China: current levels, composition profiles, and potential cancer risks[J]. Journal of Environmental Monitoring, 2012, 14(12): 3156-3163. DOI:10.1039/c2em30648d
doi: 10.1039/c2em30648d
[7]   PARK J S, WADE T L, SWEET S. Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay Texas, USA[J]. Atmospheric Environment, 2001, 35(19): 3241-3249. DOI:10.1016/S1352-2310(01)00080-2
doi: 10.1016/S1352-2310(01)00080-2
[8]   中华人民共和国环境保护部. 土壤和沉积物 多氯联苯的测定 气相色谱-质谱法: [S].北京:中国环境科学出版社,2015.
Environmental Protection Ministry of the People’s Republic of China. Soil and Sediment: Determination of Polychlorinated Biphenyls (PCBs): Gas Chromatography Mass Spectrometry: HJ 743—2015 [S]. Beijing: China Environmental Science Press, 2015. (in Chinese)
[9]   中华人民共和国生态环境部. 土壤和沉积物 多溴二苯醚的测定 气相色谱-质谱法: [S].北京:中国环境科学出版社,2018.
Ministry of Ecology and Environment of the People’s Republic of China. Soil and Sediment: Determination of Polybrominated Diphenyl Ethers: Gas Chromatography Mass Spectrometry: HJ 952—2018 [S]. Beijing: China Environmental Science Press, 2018. (in Chinese)
[10]   中华人民共和国环境保护部. 土壤和沉积物 多环芳烃的测定 气相色谱-质谱法: [S].北京:中国环境科学出版社,2016.
Environmental Protection Ministry of the People’s Republic of China. Soil and Sediment: Determination of Polycyclic Aromatic Hydrocarbon by Gas Chromatography-Mass Spectrometry Method: HJ 805—2016 [S]. Beijing: China Environmental Science Press, 2016. (in Chinese)
[11]   陆家骝,周民峰,兰韬.索氏提取法与超声提取法的比较研究[J].污染防治技术,2015,28(3):67-69.
LU J L, ZHOU M F, LAN T. The comparison between the soxhlet extraction and ultrasonic extraction[J]. Pollution Control Technology, 2015, 28(3): 67-69. (in Chinese with English abstract)
[12]   姚常浩,王妍,杜英秋,等.加速溶剂萃取-串联质谱法测定土壤中20种农药方法优化[J].环境化学,2016,35(4):840-842.
YAO C H, WANG Y, DU Y Q, et al. Determination of 20 pesticides in soils using gas chromatography-tandem mass spectrometry combined with accelerated solvent extraction was optimized[J]. Environmental Chemistry, 2016, 35(4): 840-842. (in Chinese)
[13]   相雷雷,宋洋,卞永荣,等.土壤中10种多溴联苯醚的加速溶剂-固相萃取净化方法优化研究[J].分析化学,2016,44(5):671-677. DOI:10.11895/j.issn.0253-3820.150821
XIANG L L, SONG Y, BIAN Y R, et al. A purification method for determination of 10 polybrominated diphenyl ethers in soil using accelerated solvent extraction-solid phase extraction[J]. Journal of Analytical Chemistry, 2016, 44(5): 671-677. (in Chinese with English abstract)
doi: 10.11895/j.issn.0253-3820.150821
[14]   杨美玉,倪进治,杨柳明,等.土壤中多环芳烃定量检测的前处理方法比较研究[J].实验室科学,2020,23(3):34-38. DOI:10.3969/j.issn.1672-4305.2020.03.010
YANG M Y, NI J Z, YANG L M, et al. Comparative study on the pretreatment methods for quantitative determination of polycyclic aromatic hydrocarbons in soil[J]. Laboratory Science, 2020, 23(3): 34-38. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-4305.2020.03.010
[15]   刘彬,闫强,郭丽,等.加压流体萃取-硅酸镁柱净化-气相色谱质谱法同时测定土壤中有机氯农药和多环芳烃[J].环境化学,2019,38(10):2212-2221. DOI:10.7524/j.issn.0254-6108.2018112605
LIU B, YAN Q, GUO L, et al. Simultaneous determination of OCPs and PAHs in soil by GC-MSD with ASE and florisil SPE purification[J]. Environmental Chemistry, 2019, 38(10): 2212-2221. (in Chinese with English abstract)
doi: 10.7524/j.issn.0254-6108.2018112605
[16]   鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
[17]   YANG L, LOU J, WANG H Z, et al. Use of an improved high-throughput absolute abundance quantification method to characterize soil bacterial community and dynamics[J]. The Science of the Total Environment, 2018, 633: 360-371. DOI:10.1016/j.scitotenv.2018.03.201
doi: 10.1016/j.scitotenv.2018.03.201
[18]   ZHOU W X, HUANG X W, LIN K D. Analysis of polyhalogenated carbazoles in sediment using liquid chromatography-tandem mass spectrometry[J]. Ecotoxicology and Environmental Safety, 2019, 170: 148-155. DOI:10.1016/j.ecoenv.2018.11.131
doi: 10.1016/j.ecoenv.2018.11.131
[19]   ZHOU Y X, ZHU G H, LI M F, et al. Method development for analyzing ultratrace polyhalogenated carbazoles in soil and sediment[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109470. DOI:10.1016/j.ecoenv.2019.109470
doi: 10.1016/j.ecoenv.2019.109470
[20]   LI Q Q, YANG F, SU G J, et al. Thermal degradation of polybrominated diphenyl ethers over as-prepared Fe3O4 micro/nano-material and hypothesized mechanism[J]. Environmental Science and Pollution Research International, 2016, 23(2): 1540-1551. DOI:10.1007/s11356-015-5400-z
doi: 10.1007/s11356-015-5400-z
[21]   张延平,陈振超,孙晓薇,等.固相萃取/气相色谱-串联质谱法测定竹笋产地土壤中42种持久性有机污染物[J].分析测试学报,2018,37(12):1431-1438. DOI:10.3969/j.issn.1004-4957.2018.12.005
ZHANG Y P, CHEN Z C, SUN X W, et al. Determination of 42 persistent organic pollutants in geographical original soil of bamboo shoot by gas chromatography-tandem mass spectrometry with solid phase extraction[J]. Journal of Instrumental Analysis, 2018, 37(12): 1431-1438. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-4957.2018.12.005
[22]   何明江,沈浩然,查婷,等.水稻土中痕量多环芳烃的分析测定方法[J].浙江大学学报(农业与生命科学版),2017,43(6):766-774. DOI:10.3785/j.issn.1008-9209.2017.05.171
HE M J, SHEN H R, ZHA T, et al. Determination method for trace polycyclic aromatic hydrocarbons in paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 766-774. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2017.05.171
[23]   陶鑫,全洗强,俞建国,等.加速溶剂萃取-旋蒸定容-高效液相色谱法检测土壤中16种多环芳烃[J].环境化学,2019,38(12):2797-2807. DOI:10.7524/j.issn.0254-6108.2019041705
TAO X, QUAN X Q, YU J G, et al. Analysis of 16 polycyclic aromatic hydrocarbons in soil with accelerated solvent extraction, rotary evaporation for obtaining a constant volume and high performance liquid chroma-tography[J]. Environmental Chemistry, 2019, 38(12): 2797-2807. (in Chinese with English abstract)
doi: 10.7524/j.issn.0254-6108.2019041705
[24]   HU A L, QIU M, LIU H, et al. Simultaneous determination of phthalate diesters and monoesters in soil using accelerated solvent extraction and ultra-performance liquid chroma-tography coupled with tandem mass spectrometry[J]. Journal of Chromatography A, 2020, 4626: 461347. DOI:10.1016/j.chroma.2020.461347
doi: 10.1016/j.chroma.2020.461347
[25]   苏趋,刘彬,洪军,等.加速溶剂萃取-高效液相色谱法测定土壤中11种三嗪类除草剂[J].环境化学,2017,36(3):628-634. DOI:10.7524/j.issn.0254-6108.2017.03.2016071805
SU Q, LIU B, HONG J, et al. Determination of eleven triazine pesticides in soil samples by accelerated solvent extraction-high performance liquid chromatography[J]. Environmental Chemistry, 2017, 36(3): 628-634. (in Chinese with English abstract)
doi: 10.7524/j.issn.0254-6108.2017.03.2016071805
[26]   TANG X J, SHEN C F, SHI D Z, et al. Heavy metal and persistent organic compound contamination in soil from Wenling: an emerging e-waste recycling city in Taizhou area, China[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 653-660. DOI:10.1016/j.jhazmat.2009.08.134
doi: 10.1016/j.jhazmat.2009.08.134
[27]   TANG X J, ZENG B, HASHMI M Z, et al. PBDEs and PCDD/Fs in surface soil taken from the Taizhou e-waste recycling area, China[J]. Chemistry and Ecology, 2014, 30(3): 245-251. DOI:10.1080/02757540.2013.844798
doi: 10.1080/02757540.2013.844798
[28]   刘庚,石瑛,田海金,等.某大型砷渣场地土壤As污染特征及生态风险评价[J].环境科学,2018,39(12):5639-5646. DOI:10.13227/j.hjkx.201804087
LIU G, SHI Y, TIAN H J, et al. Soil pollution characteristics and ecological risk assessment of As at a largescale arsenic slag-contaminated site[J]. Environmental Science, 2018, 39(12): 5639-5646. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201804087
[29]   MUKHERJEE S, JUOTTONEN H, SIIVONEN P, et al. Spatial patterns of microbial diversity and activity in an aged creosote-contaminated site[J]. International Society for Microbial Ecology Journal, 2014, 8(10): 2131-2142. DOI:10.1038/ismej.2014.151
doi: 10.1038/ismej.2014.151
[30]   魏抱楷,柳晨,王英,等.浙江省台州市电子垃圾拆解地多溴联苯醚浓度水平分布特征和迁移趋势[J].环境科学,2020,41(10):1-16. DOI:10.13227/j.hjkx.202003188
WEI B K, LIU C, WANG Y, et al. Polybrominated diphenyl ether in e-waste dismantling sites in Taizhou City, Zhejiang Province: concentration, distribution, and migration trend[J]. Environmental Science, 2020, 41(10): 1-16. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.202003188
[31]   宋爱民,李会茹,刘合欢,等.练江沉积物中多溴联苯醚的污染特征、来源和潜在生态风险研究[J].环境科学学报,2020,40(4):1309-1320. DOI:10.13671/j.hjkxxb.2019.0472
SONG A M, LI H R, LIU H H, et al. Study on the pollution characteristics, sources and potential ecological risk of polybrominated diphenyl ethers in sediments from the Lian River[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1309-1320. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2019.0472
[1] Shanlian QIU,Baomei LIN,Miaohong WU,Jiamin HONG,Kaibin ZHENG. Research on aroma components in flowers and fruits of three varieties of jaboticaba[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(6): 757-767.
[2] Ranran ZHENG,Jingzhi WU,Zhijia GU,Wenbin YUAN,Hongzhi WU. Study on the floral scent components of Lilium amoenum with rose fragrance and Lilium bakerianum var. rubrum with orange fragrance[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 32-42.
[3] Zhida CHEN,Xinli WEN,Xinghua CHEN,Xianyu CHEN,Bo LI,Youying TU. Research on aroma components in different grades of Fuding white tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 715-722.
[4] Hongmei HU,Tiejun LI,Lu ZHANG,Qing HAO,Xiumei SUN,Yanjian JIN,Zhongzhen YING,Yuanming GUO. Determination and ecological risk assessment of phthalic acid esters in marine sediments[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 365-375.
[5] Junxing LI,Yujuan ZHONG,Jianning LUO,Xiaoli HE,Hao GONG,Haibin WU,Shijuan YAN,Hexun HUANG. Detection of volatile flavor compounds in leaf of Xiangyu pumpkin using headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 175-180.
[6] QI Dandan, CHEN Wei, MIAO Aiqing, WANG Wenwen, PANG Shi, MA Chengying. Effects of rapid ageing technology on the aroma quality of white tea using gas chromatographymass spectrometry/mass spectrometry combined with chemometrics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 704-710.
[7] . Determination method for trace polycyclic aromatic hydrocarbons in paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 766-774.
[8] HU Hongmei, GUO Yuanming, HAO Qing, SUN Xiumei, JIN Yanjian, ZHONG Zhi, ZHANG Xiaojun. Determination of polychlorinated biphenyls in water by gas chromatography-electron capture detector combined with automated liquid-liquid extraction and dispersive solid phase extraction clean-up[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 99-106.
[9] Xu Yuanjun, He Jing, Jia Lingyan, Wu Yuanyuan, Tu Youying. Differentiation of aroma compositions in different regions and special varieties of black tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(03): 323-330.