Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2022, Vol. 48 Issue (2): 254-260    DOI: 10.3785/j.issn.1008-9209.2021.03.012
Animal sciences & veterinary medicines     
NLRC5 sequence characteristics and analysis of tissue expression profile in goose (Anser cygnoides)
Shuai ZHAO1(),Tiantian GU1,Li’e HOU1,Yang ZHANG1,Zhengfeng CAO1,Guohong CHEN1,2,Qi XU1,Yu ZHANG1()
1.College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China
2.Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, Jiangsu, China
Download: HTML   HTML (   PDF(8456KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

As one of the important members of the NOD-like receptor (NLR) family, NLRC5 plays an important role in the recognition of invading microorganisms, immune signal transmission and innate immune response regulation in vivo, but there are relatively few researches on NLRC5 in poultry. In this study, the Yangzhou goose was selected, and the sequence characteristics of NLRC5 was analyzed, and the expression profile of NLRC5 gene was detected by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR). The expression levels of NLRC5 in the liver, spleen and kidney of goslings infected with Salmonella enteritidis at 0, 1, 2 and 4 d post-infection were examined. The results showed that the amino acid sequence of goose NLRC5 was highly conserved in vertebrates, and shared high homology with duck (89.12%). The NLRC5 mRNA was widely expressed in the heart, liver, spleen, lung, kidney, duodenum, gizzard, brain and muscle, and its expression level was the highest in the spleen. In addition, the expressions of NLRC5 in the liver, spleen and kidney of goslings infected with S.enteritidis were significantly upregulated during 1-2 d, and then returned to normal at 4 d post-infection. The above results are helpful to understand the role of NLRC5 in the immune response of goose infected with S. enteritidis.



Key wordsNLRC5      goose      innate immune response      Salmonella enteritidis     
Received: 01 March 2021      Published: 29 April 2022
CLC:  S 835  
Corresponding Authors: Yu ZHANG     E-mail: 626981977@qq.com;yuzhang@yzu.edu.cn
Cite this article:

Shuai ZHAO,Tiantian GU,Li’e HOU,Yang ZHANG,Zhengfeng CAO,Guohong CHEN,Qi XU,Yu ZHANG. NLRC5 sequence characteristics and analysis of tissue expression profile in goose (Anser cygnoides). Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 254-260.

URL:

https://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.03.012     OR     https://www.zjujournals.com/agr/Y2022/V48/I2/254


鹅NLRC5序列特征及组织表达谱分析

作为NOD样受体(NOD-like receptor, NLR)家族重要成员之一的NLRC5,在机体识别入侵微生物、传递免疫信号及调节先天性免疫反应中具有重要作用。本研究以扬州鹅为研究对象,分析鹅NLRC5序列特征,并通过实时荧光定量聚合酶链反应(real-time fluorescent quantitative polymerase chain reaction, RT-qPCR)检测NLRC5基因的组织表达谱,同时检测雏鹅感染肠炎沙门菌0、1、2、4 d后肝脏、脾脏和肾脏中NLRC5的表达水平。结果显示:鹅NLRC5氨基酸序列在脊椎动物中高度保守,其中鹅与鸭NLRC5序列同源性为89.12%;NLRC5基因在心脏、肝脏、脾脏、肺、肾脏、十二指肠、肌胃、大脑和肌肉等组织中均有表达,其中在脾脏中的表达水平最高;此外,雏鹅感染肠炎沙门菌后其肝脏、脾脏和肾脏中NLRC5的表达量在1~2 d内显著上升(P<0.05),然后在感染4 d内恢复至正常水平。上述研究结果有助于理解NLRC5在鹅感染肠炎沙门菌免疫应答中的作用。


关键词: NLRC5,  鹅,  先天性免疫反应,  肠炎沙门菌 

引物名称

Primer name

引物序列(5′→3′)

Primer sequence (5′→3′)

退火温度

Annealing temperature/℃

qNLRC5-FGAACTGCACGTCAGGAAGGA60
qNLRC5-RTGCATGTTGCAAAGACAGGC
qGAPDH-FGTGGTGCAAGAGGCATTGCTGAC60
qGAPDH-RGCTGATGCTCCCATGTTCGTGAT
Table 1 Primer information for RT-qPCR
Fig. 1 Analysis of NLRC5 amino acid sequence

物种

Species

Human

Pig

Mouse

Chicken

Duck

Goose

斑马鱼

Zebrafish

人 Human100.00
猪 Pig68.00100.00
鼠 Mouse58.7859.18100.00
鸡 Chicken35.0635.9634.45100.00
鸭 Duck34.7035.5133.4077.08100.00
鹅 Goose34.5535.3633.6577.7889.12100.00
斑马鱼 Zebrafish21.8722.6221.9724.4724.6724.77100.00
Table 2 Homology alignment of NLRC5 amino acid sequences of various species
Fig. 2 Phylogenetic tree analysis of NLRC5 gene
Fig. 3 Expression profiles of NLRC5 mRNA in goose tissuesDifferent lowercase letters above bars indicate significant differences at the 0.05 probability level, and the same below.
Fig. 4 Changes of NLRC5 mRNA expression in different tissues of goslings after being infected with S.enteritidisA. Liver; B. Spleen; C. Kidney.
[1]   AKIRA S, UEMATSU S, TAKEUCHI O. Pathogen recognition and innate immunity[J]. Cell, 2006, 124(4): 783-801. DOI:10 .1016/j.cell.2006.02.015
doi: 10
[2]   李天亮,韩超峰,曹雪涛.视黄酸诱导基因1样受体(RLR)识别和调控的研究进展[J].细胞与分子免疫学杂志,2016,32(4):549-552. DOI:10.13423/j.cnki.cjcmi.007737
LI T L, HAN C F, CAO X T. Research progress on recognition and regulation of retinoic acid-induced gene 1-like receptor (RLR)[J]. Chinese Journal of Cellular and Molecular Immunology, 2016, 32(4): 549-552. (in Chinese)
doi: 10.13423/j.cnki.cjcmi.007737
[3]   YANG Q Y, CHEN T, CHEN Y B, et al. Molecular characterization and expression analysis of the NLR family CARD containing five transcripts in the pig[J]. Polish Journal of Veterinary Sciences, 2016, 19(4): 753-761. DOI:10.1515/pjvs-2016-0095
doi: 10.1515/pjvs-2016-0095
[4]   INOHARA N, NU?EZ G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens[J]. Oncogene, 2001, 20(44): 6473-6481. DOI:10.1038/sj.onc.1204787
doi: 10.1038/sj.onc.1204787
[5]   RODRIGUEZ G M, BOBBALA D, SERRANO D, et al. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8+ T lymphocytes[J]. Oncoimmunology, 2016, 5(6): e1151593. DOI:10.1080/2162402X.2016.1151593
doi: 10.1080/2162402X.2016.1151593
[6]   CHONWERAWONG M, FERRAND J, CHAUDHRY H M, et al. Innate immune molecule NLRC5 protects mice from Helicobacter-induced formation of gastric lymphoid tissue[J]. Gastroenterology, 2020, 159(1): 169-182. DOI:10.1053/j.gastro.2020.03.009
doi: 10.1053/j.gastro.2020.03.009
[7]   MARTH C D, FIRESTONE S M, GLENTON L Y, et al. Oestrous cycle-dependent equine uterine immune response to induced infectious endometritis[J]. Veterinary Research, 2016, 47(1): 110. DOI:10.1186/s13567-016-0398-x
doi: 10.1186/s13567-016-0398-x
[8]   WANG Y Y, HUANG C, BIAN E, et al. NLRC5 negatively regulates inflammatory responses in LPS-induced acute lung injury through NF-κB and p38 MAPK signal pathways[J]. Toxicology and Applied Pharmacology, 2020, 403: 115150. DOI:10.1016/j.taap.2020.115150
doi: 10.1016/j.taap.2020.115150
[9]   QIU L L, MA T, CHANG G B, et al. Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum [J]. Gene, 2017, 597: 23-29. DOI:10.1016/j.gene.2016.10.026
doi: 10.1016/j.gene.2016.10.026
[10]   CIRACI C, TUGGLE C K, WANNEMUEHLER M J, et al. Unique genome-wide transcriptome profiles of chicken macrophages exposed to Salmonella-derived endotoxin[J]. BMC Genomics, 2010, 11(1): 545. DOI:10.1186/1471-2164-11-545
doi: 10.1186/1471-2164-11-545
[11]   ZAKI M H, VOGEL P, MALIREDDI R K S, et al. The NOD-like receptor NLRP12 attenuates colon inflammation and tumorigenesis[J]. Cancer Cell, 2011, 20(5): 649-660. DOI:10.1016/j.ccr.2011.10.022
doi: 10.1016/j.ccr.2011.10.022
[12]   CASTA?O-RODRíGUEZ N, KAAKOUSH N O, GOH K L, et al. The NOD-like receptor signalling pathway in Helicobacter pylori infection and related gastric cancer: a case-control study and gene expression analyses[J]. PLoS ONE, 2014, 9(6): e98899. DOI:10.1371/journal.pone.0098899
doi: 10.1371/journal.pone.0098899
[13]   CHANG G B, LIU X P, MA T, et al. A mutation in the NLRC5 promoter limits NF-κB signaling after Salmonella enteriditis infection in the spleen of young chickens[J]. Gene, 2015, 568(2): 117-123. DOI:10.1016/j.gene.2015.05.023
doi: 10.1016/j.gene.2015.05.023
[14]   TONG Y Z, CUI J, LI Q T, et al. Enhanced TLR-induced NF-κB signaling and typeⅠ interferon responses in NLRC5 deficient mice[J]. Cell Research, 2012, 22(5): 822-835. DOI:10.1038/cr.2012.53
doi: 10.1038/cr.2012.53
[15]   YAO Y K, QIAN Y C. Expression regulation and function of NLRC5[J]. Protein & Cell, 2013, 4(3): 168-175. DOI:10.1007/s13238-012-2109-3
doi: 10.1007/s13238-012-2109-3
[16]   BENKO S, MAGALHAES J G, PHILPOTT D J, et al. NLRC5 limits the activation of inflammatory pathways[J]. The Journal of Immunology, 2010, 185(3): 1681-1691. DOI:10.4049/jimmunol.0903900
doi: 10.4049/jimmunol.0903900
[17]   NEERINCX A, LAUTZ K, MENNING M, et al. A role for the human nucleotide-binding domain, leucine-rich repeat-containing family member NLRC5 in antiviral responses[J]. Journal of Biological Chemistry, 2010, 285(34): 26223-26232. DOI:10.1074/jbc.M110.109736
doi: 10.1074/jbc.M110.109736
[18]   BISWAS A, MEISSNER T B, KAWAI T, et al. Cutting edge: impaired MHC classⅠexpression in mice deficient for NlRC5/classⅠ transactivator[J]. The Journal of Immunology, 2012, 189(2): 516-520. DOI:10.4049/jimmunol.1200064
doi: 10.4049/jimmunol.1200064
[19]   LUPFER C, KANNEGANTI T D. The expanding role of NLRs in antiviral immunity[J]. Immunological Reviews, 2013, 255(1): 13-24. DOI:10.1111/imr.12089
doi: 10.1111/imr.12089
[20]   CUI J, ZHU L, XIA X J, et al. NLRC5 negatively regulates the NF-κB and typeⅠ interferon signaling pathways[J]. Cell, 2010, 141(3): 483-496. DOI:10.1016/j.cell.2010.03.040
doi: 10.1016/j.cell.2010.03.040
[21]   LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. DOI:10 .1006/meth.2001.1262
doi: 10
[22]   FAN G W, ZHANG Y, JIANG X R, et al. Anti-inflammatory activity of baicalein in LPS-stimulated RAW264.7 macrophages via estrogen receptor and NF-κB-dependent pathways[J]. Inflammation, 2013, 36(6): 1584-1591. DOI:10 .1007/s10753-013-9703-2
doi: 10
[23]   KOPPULA S, KIM W J, JIANG J, et al. Carpesium macrocephalum attenuates lipopolysaccharide-induced inflammation in macrophages by regulating the NF-κB/IκB-α, Akt, and STAT signaling pathways[J]. The American Journal of Chinese Medicine, 2013, 41(4): 927-943. DOI:10.1142/S0192415X13500626
doi: 10.1142/S0192415X13500626
[24]   International HapMap Consortium. The International HapMap Project[DS]. Nature, 2003, 426(6968): 789-796. DOI: 10.1038/nature02168
doi: 10.1038/nature02168
[25]   DAVIS B K, ROBERTS R A, HUANG M T, et al. Cutting edge: NLRC5-dependent activation of the inflammasome[J]. The Journal of Immunology, 2011, 186(3): 1333-1337. DOI:10.4049/jimmunol.1003111
doi: 10.4049/jimmunol.1003111
[1] Xin YUAN,Liang LI,Hua HE,Shenqiang HU,Jiwen WANG. Construction of a CRISPR-Cas9 knockdown lentiviral plasmid of goose (Anas platyrhynchos) stearoyl-coenzyme A desaturase gene[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 529-538.
[2] Zhixin YI,Yilong JIANG,Qiuhong WANG,Qilin XU,Xinxing WANG,Guilin MO,Dongmei JIANG,Bo KANG. Effects of spermine on immune organ indexes and expression levels of genes related to immune factors in geese[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 596-602.
[3] ZHAO Qianming, ZHU Longji, ZHAN Kang, HUO Yongjiu, ZHAO Guoqi. Effects of alfalfa meal with different particle sizes on production performance and blood biochemical index of Yangzhou goose[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(2): 253-261.
[4] LIU Fei,TANG Wei-jie,CHENG An-chun,WANG Ming-shu,ZHAO Ting-ting,GAO Li-qin. Transient expression of goose IFN‐α gene in COS-7 cells and primary investigation of its antiviral function[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(4): 380-386.