Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (4): 473-480    DOI: 10.3785/j.issn.1008-9209.2021.02.011
Reviews     
Research progresses on molecular mechanisms of storage, transportation and reutilization of plant seed iron
Junbo CHANG(),Zheyu MA,Zhongjie DING,Shaojian ZHENG()
State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1665KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Iron is one of the most abundant elements in the earth’s crust, ranking fourth among all crustal elements. As a trace element necessary for plant growth and development, iron plays a vital role in life processes such as photosynthesis, hormone synthesis, mitochondrial respiration and nitrogen assimilation. Plants transfer a large part of the nutrients accumulated during vegetative growth to seeds to improve the survival rate of the next generation, and iron is no exception. However, since free iron can produce active oxygen and cause damage to plants, iron is generally stored in the seed in a chelated state. When the external conditions are suitable, the seed iron will be reutilized to help the seedlings transform into an active photosynthetic state before absorbing iron from the environment, which has a very important impact on the vitality of seedlings. Seeds are also an important dietary source of iron for most of the world’s population, and iron deficiency can lead to diseases such as iron deficiency anemia which threatens human life and health. Therefore, understanding comprehensively the molecular mechanisms of storage, transportation and reutilization of seed iron is critical to increase seed iron content and iron bioavailable. This article summarizes the current research progress on the long-term storage, transportation and reutilization of iron in plant seeds, as well as the potential strategies for plant iron bioforti?cation, which provides a theoretical basis for cultivating iron-rich crops and improving the bioavailable of dietary iron.



Key wordsiron      seed      plant nutrition      transportation      iron bioforti?cation     
Received: 01 February 2021      Published: 02 September 2021
CLC:  Q 945.1  
Corresponding Authors: Shaojian ZHENG     E-mail: 1113503993@qq.com;sjzheng@zju.edu.cn
Cite this article:

Junbo CHANG,Zheyu MA,Zhongjie DING,Shaojian ZHENG. Research progresses on molecular mechanisms of storage, transportation and reutilization of plant seed iron. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 473-480.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2021.02.011     OR     http://www.zjujournals.com/agr/Y2021/V47/I4/473


植物种子铁储存、运输和再利用分子机制的研究进展

铁是地壳中含量最丰富的元素之一,在所有地壳元素中排第4位。铁作为一种植物生长发育所必需的微量元素,在光合作用、激素合成、线粒体呼吸以及氮同化等生命进程中发挥着至关重要的作用。植物会将营养生长过程中积累的大部分营养物质如铁等转移到种子中来提高下一代的存活率。由于游离态铁会产生活性氧并对植物造成伤害,因此,铁通常以螯合态的形式储存在种子中。当外界条件适宜时,种子中的铁会被再利用,帮助幼苗从环境中吸收铁之前转化为活跃的光合状态,这对提高幼苗的生命力有非常重要的影响。种子也是全球多数人口对铁的重要膳食来源,而缺铁会导致缺铁性贫血等疾病,威胁人类的生命健康,因此,全面了解种子铁的储存、运输和再利用的分子机制对提高其铁含量和铁生物有效性非常关键。本文总结了目前植物种子铁的长期储存、运输和萌发后铁的再利用的研究进展,并展望了今后需要加强的研究方向,以期为培育铁富集作物和提高膳食铁的生物有效性提供理论指导。


关键词: 铁,  种子,  植物营养,  运输,  铁生物强化 
Fig. 1 Pattern diagrams of iron storage, transportation and reutilization in Arabidopsis thaliana seeds (A) and rice seeds (B)
[1]   GUERINOT M L, YI Y. Iron: nutritious, noxious, and not readily available. Plant Physiology, 1994,104(3):815-820. DOI:10.1104/pp.104.3.815
doi: 10.1104/pp.104.3.815
[2]   ROUT G R, SAHOO S. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 2015,3:1-24. DOI:10.7831/ras.3.1
doi: 10.7831/ras.3.1
[3]   BRIAT J F, DUBOS C, GAYMARD F. Iron nutrition, biomass production, and plant product quality. Trends in Plant Science, 2015,20(1):33-40. DOI:10.1016/j.tplants.2014.07.005
doi: 10.1016/j.tplants.2014.07.005
[4]   MURGIA I, AROSIO P, TARANTINO D, et al. Biofor-tification for combating ‘hidden hunger’ for iron. Trends in Plant Science, 2012,17(1):47-55. DOI:10.1016/j.tplants.2011.10.003
doi: 10.1016/j.tplants.2011.10.003
[5]   CONNORTON J M, BALK J, RODRíGUEZ-CELMA J. Iron homeostasis in plants: a brief overview. Metallomics, 2017,9(7):813-823. DOI:10.1039/c7mt00136c
doi: 10.1039/c7mt00136c
[6]   MARI S, BAILLY C, THOMINE S. Handing off iron to the next generation: How does it get into seeds and what for?The Biochemical Journal, 2020,477(1):259-274. DOI:10.1042/BCJ20190188
doi: 10.1042/BCJ20190188
[7]   SCHNELL RAMOS M, KHODJA H, MARY V, et al. Using μPIXE for quantitative mapping of metal concentration in Arabidopsisthaliana seeds. Frontiers in Plant Science, 2013,4:168. DOI:10.3389/fpls.2013.00168
doi: 10.3389/fpls.2013.00168
[8]   ROSCHZTTARDTZ H, CONéJéRO G, CURIE C, et al. Identification of the endodermal vacuole as the iron storage compartment in the Arabidopsis embryo. Plant Physiology, 2009,151(3):1329-1338. DOI:10.1104/pp.109.144444
doi: 10.1104/pp.109.144444
[9]   MARY V, SCHNELL RAMOS M, GILLET C, et al. Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3 natural resistance associated-macrophage protein4 double mutant. Plant Physiology, 2015,169(1):748-759. DOI:10.1104/pp.15.00380
doi: 10.1104/pp.15.00380
[10]   KIM S A, PUNSHON T, LANZIROTTI A, et al. Locali-zation of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science, 2006,314(5803):1295-1298. DOI:10.1126/science.1132563
doi: 10.1126/science.1132563
[11]   EROGLU S, GIEHL R F H, MEIER B, et al. Metal tolerance protein 8 mediates manganese homeostasis and iron reallocation during seed development and germination. Plant Physiology, 2017,174(3):1633-1647. DOI:10.1104/pp.16.01646
doi: 10.1104/pp.16.01646
[12]   CHU H H, CAR S, SOCHA A L, et al. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds. Scientific Reports, 2017,7(1):11024. DOI:10.1038/s41598-017-11250-9
doi: 10.1038/s41598-017-11250-9
[13]   CVITANICH C, PRZYBY?OWICZ W J, URBANSKI D F, et al. Iron and ferritin accumulate in separate cellular locations in Phaseolus seeds. BMC Plant Biology, 2010,10:26. DOI:10.1186/1471-2229-10-26
doi: 10.1186/1471-2229-10-26
[14]   IBEAS M A, GRANT-GRANT S, CORONAS M F, et al. The diverse iron distribution in eudicotyledoneae seeds: from Arabidopsis to Quinoa. Frontiers in Plant Science, 2019,9:1985. DOI:10.3389/fpls.2018.01985
doi: 10.3389/fpls.2018.01985
[15]   IWAI T, TAKAHASHI M, ODA K, et al. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology, 2012,160(4):2007-2014. DOI:10.1104/pp.112.206573
doi: 10.1104/pp.112.206573
[16]   SINGH S P, VOGEL-MIKU? K, AR?ON I, et al. Pattern of iron distribution in maternal and filial tissues in wheat grains with contrasting levels of iron. Journal of Experimental Botany, 2013,64(11):3249-3260. DOI:10.1093/jxb/ert160
doi: 10.1093/jxb/ert160
[17]   LOTT J N, SPITZER E. X-ray analysis studies of elements stored in protein body globoid crystals of Triticum grains. Plant Physiology, 1980,66(3):494-499.
[18]   ZHANG Y, XU Y H, YI H Y, et al. Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron trans-location between flag leaves and seeds in rice. The Plant Journal, 2012,72(3):400-410. DOI:10.1111/j.1365-313X.2012.05088.x
doi: 10.1111/j.1365-313X.2012.05088.x
[19]   ZIELI?SKA-DAWIDZIAK M. Plant ferritin: a source of iron to prevent its deficiency. Nutrients, 2015,7(2):1184-1201. DOI:10.3390/nu7021184
doi: 10.3390/nu7021184
[20]   PETIT J M, BRIAT J F, LOBRéAUX S. Structure and differential expression of the four members of the Arabidopsis thaliana ferritin gene family. Biochemical Journal, 2001,359(3):575-582. DOI:10.1042/bj3590575
doi: 10.1042/bj3590575
[21]   MARENTES E, GRUSAK M A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (Pisum sativum L.). Seed Science Research, 1998,8(3):367-375. DOI:10.1017/S0960258500004293
doi: 10.1017/S0960258500004293
[22]   LESCURE A M, PROUDHON D, PESEY H, et al. Ferritin gene transcription is regulated by iron in soybean cell cultures. PNAS, 1991,88(18):8222-8226. DOI:10.1073/pnas.88.18.8222
doi: 10.1073/pnas.88.18.8222
[23]   SUN Y, LI J Q, YAN J Y, et al. Ethylene promotes seed iron storage during Arabidopsis seed maturation via ERF95 transcription factor. Journal of Integrative Plant Biology, 2020,62(8):1193-1212. DOI:10.1111/jipb.12986
doi: 10.1111/jipb.12986
[24]   HAVé M, MARMAGNE A, CHARDON F, et al. Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. Journal of Experimental Botany, 2017,68(10):2513-2529. DOI:10.1093/jxb/erw365
doi: 10.1093/jxb/erw365
[25]   ROSCHZTTARDTZ H, CONéJéRO G, DIVOL F, et al. New insights into Fe localization in plant tissues. Frontiers in Plant Science, 2013,4:350. DOI:10.3389/fpls.2013.00350
doi: 10.3389/fpls.2013.00350
[26]   POTTIER M, DUMONT J, MASCLAUX-DAUBRESSE C, et al. Autophagy is essential for optimal translocation of iron to seeds in Arabidopsis. Journal of Experimental Botany, 2019,70(3):859-869. DOI:10.1093/jxb/ery388
doi: 10.1093/jxb/ery388
[27]   UAUY C, DISTELFELD A, FAHIMA T, et al. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006,314(5803):1298-1301. DOI:10.1126/science.1133649
doi: 10.1126/science.1133649
[28]   CURIE C, BRIAT J F. Iron transport and signaling in plants. Annual Review of Plant Biology, 2003,54:183-206. DOI:10.1146/annurev.arplant.54.031902.135018
doi: 10
[29]   HINDT M N, GUERINOT M L. Getting a sense for signals: regulation of the plant iron deficiency response. Biochimica et Biophysica Acta, 2012,1823(9):1521-1530. DOI:10.1016/j.bbamcr.2012.03.010
doi: 10.1016/j.bbamcr.2012.03.010
[30]   KLATTE M, SCHULER M, WIRTZ M, et al. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiology, 2009,150(1):257-271. DOI:10.1104/pp.109.136374
doi: 10.1104/pp.109.136374
[31]   LE JEAN M, SCHIKORA A, MARI S, et al. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. The Plant Journal, 2005,44(5):769-782. DOI:110.1111/j.1365-313X.2005.02569.x
doi: 110.1111/j.1365-313X.2005.02569.x
[32]   WATERS B M, CHU H H, DIDONATO R J, et al. Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiology, 2006,141(4):1446-1458. DOI:10.1104/pp.106.082586
doi: 10.1104/pp.106.082586
[33]   CHU H H, CHIECKO J, PUNSHON T, et al. Successful reproduction requires the function of Arabidopsis yellow stripe-like1 and yellow stripe-like3 metal-nicotianamine transporters in both vegetative and reproductive structures. Plant Physiology, 2010,154:197-210. DOI:10.1104/pp.110.159103
doi: 10.1104/pp.110.159103
[34]   KOIKE S, INOUE H, MIZUNO D, et al. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. The Plant Journal, 2004,39(3):415-424. DOI:10.1111/j.1365-313X.2004.02146.x
doi: 10.1111/j.1365-313X.2004.02146.x
[35]   ISHIMARU Y, MASUDA H, BASHIR K, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. The Plant Journal, 2010,62(3):379-390. DOI:10.1111/j.1365-313X.2010.04158.x
doi: 10.1111/j.1365-313X.2010.04158.x
[36]   LEE S, CHIECKO J C, KIM S A, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiology, 2009,150(2):786-800. DOI:10.1104/pp.109.135418
doi: 10.1104/pp.109.135418
[37]   SENOURA T, SAKASHITA E, KOBAYASHI T, et al. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains. Plant Molecular Biology, 2017,95(4/5):375-387. DOI:10.1007/s11103-017-0656-y
doi: 10.1007/s11103-017-0656-y
[38]   STACEY M G, KOH S, BECKER J, et al. AtOPT3, a member of the oligopeptide transporter family, is essential for embryo development in Arabidopsis. The Plant Cell, 2002,14(11):2799-2811. DOI:10.1105/tpc.005629
doi: 10.1105/tpc.005629
[39]   STACEY M G, PATEL A, MCCLAIN W E, et al. The Arabidopsis AtOPT3 protein functions in metal homeostasis and movement of iron to developing seeds. Plant Physiology, 2008,146(2):589-601. DOI:10.1104/pp.107.108183
doi: 10.1104/pp.107.108183
[40]   ZHAI Z, GAYOMBA S R, JUNG H I, et al. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. The Plant Cell, 2014,26(5):2249-2264. DOI:10.1105/tpc.114.123737
doi: 10.1105/tpc.114.123737
[41]   ROSCHZTTARDTZ H, SéGUéLA-ARNAUD M, BRIAT J F, et al. The FRD3 citrate effluxer promotes iron nutrition between symplastically disconnected tissues throughout Arabidopsis development. The Plant Cell, 2011,23(7):2725-2737. DOI:10.1105/tpc.111.088088
doi: 10.1105/tpc.111.088088
[42]   MORRISSEY J, BAXTER I R, LEE J, et al. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. The Plant Cell, 2009,21(10):3326-3338. DOI:10.1105/tpc.109.069401
doi: 10.1105/tpc.109.069401
[43]   GRILLET L, OUERDANE L, FLIS P, et al. Ascorbate efflux as a new strategy for iron reduction and transport in plants. The Journal of Biological Chemistry, 2014,289(5):2515-2525. DOI:10.1074/jbc.M113.514828
doi: 10.1074/jbc.M113.514828
[44]   BELGAROUI N, ZAIDI I, FARHAT A, et al. Over-expression of the bacterial phytase US417 in Arabidopsis reduces the concentration of phytic acid and reveals its involvement in the regulation of sulfate and phosphate homeostasis and signaling. Plant and Cell Physiology, 2014,55(11):1912-1924. DOI:10.1093/pcp/pcu122
doi: 10.1093/pcp/pcu122
[45]   LANQUAR V, LELIèVRE F, BOLTE S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. The EMBO Journal, 2005,24(23):4041-4051. DOI:10.1038/sj.emboj.7600864
doi: 10.1038/sj.emboj.7600864
[46]   TAKAHASHI M, NOZOYE T, KITAJIMA N, et al. In vivo analysis of metal distribution and expression of metal transporters in rice seed during germination process by microarray and X-ray fluorescence imaging of Fe, Zn, Mn, and Cu. Plant and Soil, 2009,325(1):39. DOI:10.1007/s11104-009-0045-7
doi: 10.1007/s11104-009-0045-7
[47]   NOZOYE T, INOUE H, TAKAHASHI M, et al. The expression of iron homeostasis-related genes during rice germination. Plant Molecular Biology, 2007,64(1/2):35-47. DOI:10.1007/s11103-007-9132-4
doi: 10.1007/s11103-007-9132-4
[48]   LEE S, KIM Y S, JEON U S, et al. Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Molecules and Cells, 2012,33(3):269-275. DOI:10.1007/s10059-012-2231-3
doi: 10.1007/s10059-012-2231-3
[49]   LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, Cell and Environment, 2009,32(4):408-416. DOI:10.1111/j.1365-3040.2009.01935.x
doi: 10.1111/j.1365-3040.2009.01935.x
[1] Xiaohui WANG,Kunpeng ZHOU. Research on recognition methods for red tomato image in the natural environment[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(3): 395-403.
[2] Wenjie LIU,Shunhan LIU,Fumei XIN,Kentian ZHAO. Response of growth and physiological changes of Sophora moorcroftiana seedlings to root-cutting intensity[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 243-250.
[3] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[4] Jane MAKONI, Antony MAODZEKA, Can SUN, Devwattie DASS, Tianlun ZHAO, Shuijin ZHU, Jinhong CHEN. Effects of newly developed biodegradable liquid mulch on soil temperature, cotton seed germination and seedling growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 699-707.
[5] Peng HUO,Jianping LI,Xin YANG,Shucai XU,Xiaowen FAN. Structure design and field test of vibration swing type seedling lifting and soil cleaning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 618-624.
[6] Wentao MA,Ping CHENG,Hong LI,Zhigang ZHANG,Shengli WU,Mingyu ZHAO. Stemflow dynamics of Fuji apple trunk sap in arid oasis area and its response to environmental factors[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 428-440.
[7] Antony MAODZEKA, Lingzhi LU, Xinze ZHAO, Ying XU, Dezhi WU, Lixi JIANG. Effect of exogenous 5-aminolevulinic acid on glucosinolate biosynthesis in rape (Brassica napus L.) seedlings[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 291-307.
[8] Dongdong CAO,Wei WU,Shanyu CHEN,Yebo QIN,Guanhai RUAN,Min LU,Peili QIAN,Yutao HUANG. Seed vigor testing by low temperature germination in early rice[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 657-666.
[9] Ruowei GUAN,Jianxin LIU. Causes of susceptibility to diseases and early monitoring of common diseases in perinatal dairy cows[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 519-525.
[10] Kun XU,Lin CHEN,Yingying BIAN,Jianing XIN,Xinguo YANG. Allelopathy of aqueous extract from Artemisia scoparia root on seed germination and seedling growth of four Agropyron plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 574-584.
[11] Xuesi Lü,Ziming REN,Dong ZHANG,Yiping XIA. Aseptic germination and bulblet formation of Ixiolirion tataricum (Pall.) Herb. seeds.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 296-305.
[12] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[13] Liwen CAO,Xiao ZHI,Jiahe DAI,Ningning YU,Yiqian CHEN,Lixin YE,Liping CHEN,Ligen XU. Immature seed culture and in vitro propagation of Platycrater arguta[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 157-163.
[14] Shaorong DUAN,Yu ZHENG,Jibin NAN,Sang MI,Yalei ZHAO,Ling LIN. Seedling growth and photosynthetic characteristics of different[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 164-174.
[15] Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.