Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (5): 607-618    DOI: 10.3785/j.issn.1008-9209.2020.10.261
Resource utilization & environmental protection     
Nutrient contents and stoichiometric characteristics of plant leaf-litter-soil in alpine forest
Hong YANG1(),Wenjie LIU1,Heman LIU2(),Lihua CAO2
1.Resources and Environment College, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, Xizang, China
2.College of Agronomy, Xinyang Agriculture and Forestry University, Xinyang 464000, Henan, China
Download: HTML   HTML (   PDF(1139KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to explore the nutrient content, return rate and stoichiometric characteristics of plant leaf-litter-soil in alpine forest, the typical forests of Sejila Mountain in Southeast Tibet were analyzed. The results showed that for the same forest type, the contents of organic carbon (C), total nitrogen (N), total phosphorus (P) and total potassium (K) in 0-10 cm soil layer were the highest, while those in >20-30 cm soil layer were the lowest. The contents of total N, total P and total K in the samples were new leaf>old leaf>litter>soil, while the content of organic C was old leaf>new leaf>litter>soil. The stoichiometric ratios of C to N, C to P, and C to K of soil, litter, new and old leaves, respectively, were coniferous forest>broad-leaved forest. It could be seen that coniferous forest was more conducive to the accumulation of C, and broad-leaved forest was conducive to the accumulation of mineral nutrients of N, P, and K. The stoichiometric ratios of N to P in plant leaves ranged from 2.87-5.27, which were significantly lower than the global average level (16.00). It was indicated that this study area was obviously restricted by N element. The nutrient return rates of N, P, and K were all positive, and generally showed that the broad-leaved forest was higher than the coniferous forest. The results provide data support for scientifically clarifying the plant leaf-litter-soil nutrient cycle of forest ecosystem in Southeast Tibet.



Key wordsalpine forest      stoichiometric characteristics      plant leaf      litter      soil     
Received: 26 October 2020      Published: 27 October 2021
CLC:  S 714  
Corresponding Authors: Heman LIU     E-mail: hyang2016@163.com;liuh-m@163.com
Cite this article:

Hong YANG,Wenjie LIU,Heman LIU,Lihua CAO. Nutrient contents and stoichiometric characteristics of plant leaf-litter-soil in alpine forest. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 607-618.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.10.261     OR     http://www.zjujournals.com/agr/Y2021/V47/I5/607


高寒森林植物叶片-枯落物-土壤养分含量及化学计量特征

以藏东南色季拉山典型森林植被为研究对象,探究高寒森林植物叶片-枯落物-土壤养分含量、回流率及化学计量特征。结果表明:同一森林类型有机碳、全氮、全磷和全钾含量在不同土层中均表现为0~10 cm土层最高,>20~30 cm土层最低;各部分中全氮、全磷和全钾含量表现为新叶>老叶>枯落物>土壤,有机碳含量表现为老叶>新叶>枯落物>土壤。土壤、枯落物、新叶和老叶的碳(C)、氮(N)和C、磷(P)与C、钾(K)的化学计量比均表现为针叶林>阔叶林,可见针叶林更有利于C的累积,阔叶林则有利于N、P、K矿质营养元素的累积。本研究中,植物叶片N、P的化学计量比分布在2.87~5.27之间,显著低于全球平均水平(16.00),说明本研究区域为明显的N元素限制类型。N、P、K养分回流率均为正值,总体上均表现为阔叶林>针叶林。本研究结果为科学阐明藏东南森林生态系统植物叶片-枯落物-土壤养分循环研究提供了数据支撑。


关键词: 高寒森林,  化学计量特征,  植物叶片,  枯落物,  土壤 

样地植被类型

Vegetation type of sample plot

经度(E)

Longitude (E)

纬度(N)

Latitude (N)

海拔

Altitude/m

坡度

Slope/(°)

雪山杜鹃 R. aganniphum94°41′39.47″29°39′17.26″4 30025
林芝杜鹃 R. nyingchiense94°41′37.22″29°39′12.51″4 10032
急尖长苞冷杉 A. georgei var. smithii94°42′20.35″29°39′05.59″3 90048
林芝云杉 P. likiangensis var. linzhiensis94°42′32.53″29°39′05.08″3 70041
Table 1 Sample plot location and its community structure
Fig. 1 Distribution characteristics of OC content in leaf-litter-soil continuum of forest vegetationDifferent lowercase or uppercase letters above bars indicate significant or highly significant differences at the same soil depth (A) or the same sample type (B) among different vegetation types at the 0.05 or 0.01 probability level.
Fig. 2 Distribution characteristics of TN content in leaf-litter-soil continuum of forest vegetationDifferent lowercase or uppercase letters above bars indicate significant or highly significant differences at the same soil depth (A) or the same sample type (B) among different vegetation types at the 0.05 or 0.01 probability level.
Fig. 3 Distribution characteristics of TP content in leaf-litter-soil continuum of forest vegetationDifferent lowercase or uppercase letters above bars indicate significant or highly significant differences at the same soil depth (A) or the same sample type (B) among different vegetation types at the 0.05 or 0.01 probability level.
Fig. 4 Distribution characteristics of TK content in leaf-litter-soil continuum of forest vegetationDifferent lowercase or uppercase letters above bars indicate significant or highly significant differences at the same soil depth (A) or the same sample type (B) among different vegetation types at the 0.05 or 0.01 probability level.
Fig. 5 Stoichiometric characteristics of OC, TN, TP, and TKDifferent lowercase or uppercase letters above bars indicate significant or highly significant differences at the same sample type among different vegetation types at the 0.05 or 0.01 probability level.
Fig. 6 Correlation between stoichiometric ratios of plant leaf-litter-soil C to N and other stoichiometric ratios
Fig. 7 Nutrient return ratePL: P. likiangensis var. linzhiensis; AG: A. georgei var. smithii; RN: R. nyingchiense; RA: R. aganniphum.
[1]   REICH P B, TJOELKER M G, MACHADO J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 2006,439(7075):457-461. DOI:10.1038/nature04282
doi: 10
[2]   杨佳佳,张向茹,马露莎,等.黄土高原刺槐林不同组分生态化学计量关系研究.土壤学报,2014,51(1):133-142. DOI:10.11766/trxb201211280492
YANG J J, ZHANG X R, MA L S, et al. Ecological stoichiometric relationships between components of Robinia pseudoacacia forest in Loess Plateau. Acta Pedologica Sinica, 2014,51(1):133-142. (in Chinese with English abstract)
doi: 10
[3]   ELSER J J, FAGAN W F, DENNO R F, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature, 2000,408(6812):578-580. DOI:10.1038/35046058
doi: 10.1038/35046058
[4]   SCHIPPER L A, PERCIVAL H J, SPARLING G P. An approach for estimating when soils will reach maximum nitrogen storage. Soil Use and Management, 2004,20(3):281-286. DOI:10.1079/SUM2004255
doi: 10.1079/SUM2004255
[5]   李明军,喻理飞,杜明凤,等.不同林龄杉木人工林植物-凋落叶-土壤C、N、P化学计量特征及互作关系.生态学报,2018,38(21):7772-7781. DOI:10.5846/stxb201708221509
LI M J, YU L F, DU M F, et al. C, N and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages. Acta Ecologica Sinica, 2018,38(21):7772-7781. (in Chinese with English abstract)
doi: 10.5846/stxb201708221509
[6]   ELSER J J, FAGAN W F, KERKHOFF A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytologist, 2010,186(3):593-608. DOI:10.1111/j.1469-8137.2010.03214.x
doi: 10.1111/j.1469-8137.2010.03214.x
[7]   李玉霖,毛伟,赵学勇,等.北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究.环境科学,2010,31(8):1716-1725. DOI:10.13227/j.hjkx.2010.08.001
LI Y L, MAO W, ZHAO X Y, et al. Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science, 2010,31(8):1716-1725. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.2010.08.001
[8]   章清涛,高小虎,宋桂龙,等.高速公路岩石边坡3类人工植物群落凋落物分解特征.草原与草坪,2020,40(2):87-91. DOI:10.13817/j.cnki.cyycp.2020.02.013
ZHANG Q T, GAO X H, SONG G L, et al. Analysis of litter decomposition characteristics in three types of artificial vegetation community on expressway rock slope. Grassland and Turf, 2020,40(2):87-91. (in Chinese with English abstract)
doi: 10.13817/j.cnki.cyycp.2020.02.013
[9]   MOOSHAMMER M, WANEK W, SCHNECKER J, et al. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology, 2012,93(4):770-782. DOI:10.1890/11-0721.1
doi: 10.1890/11-0721.1
[10]   董世魁,汤琳,王学霞,等.青藏高原高寒草地植物多样性测定的最小样地面积.生物多样性,2013,21(6):651-657. DOI:10.3724/SP.J.1003.2013.07095
DONG S K, TANG L, WANG X X, et al. Minimum plot size for estimating plant biodiversity of the alpine grasslands on the Qinghai-Tibetan Plateau. Biodiversity Science, 2013,21(6):651-657. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2013.07095
[11]   任书杰,于贵瑞,姜春明,等.中国东部南北样带森林生态系统102个优势种叶片碳氮磷化学计量学统计特征.应用生态学报,2012,23(3):581-586. DOI:10.13287/j.1001-9332.2012.0111
REN S J, YU G R, JIANG C M, et al. Stoichiometric characteristics of leaf carbon, nitrogen, and phosphorus of 102 dominant species in forest ecosystems along the North-South Transect of East China. Chinese Journal of Applied Ecology, 2012,23(3):581-586. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.2012.0111
[12]   洪江涛,吴建波,王小丹.全球气候变化对陆地植物碳氮磷生态化学计量学特征的影响.应用生态学报,2013,24(9):2658-2665. DOI:10.13287/j.1001-9332.2013.0517
HONG J T, WU J B, WANG X D. Effects of global climate change on the C, N and P stoichiometry of terrestrial plants. Chinese Journal of Applied Ecology, 2013,24(9):2658-2665. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.2013.0517
[13]   鲍士旦.土壤农化分析.3版.北京:中国农业出版社,2000. DOI:10.1080/0005772x.2000.11099478
BAO S D. Soil Agrochemical Analysis. 3rd ed. Beijing: China Agriculture Press, 2002. (in Chinese)
doi: 10.1080/0005772x.2000.11099478
[14]   郭超,蔡家艳,金奇,等.鄱阳湖湿地优势植物氮磷再吸收.生态学杂志,2016,35(3):692-697. DOI:10.13292/j.1000-4890.2016.03.021
GUO C, CAI J Y, JIN Q, et al. Nitrogen and phosphorus resorption of six dominant plant species in Poyang Lake wetlands. Chinese Journal of Ecology, 2016,35(3):692-697. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.2016.03.021
[15]   司高月,李晓玉,程淑兰,等.长白山垂直带森林叶片-凋落物-土壤连续体有机碳动态:基于稳定性碳同位素分析.生态学报,2017,37(16):5285-5293. DOI:10.5846/stxb201605190967
SI G Y, LI X Y, CHENG S L, et al. Organic carbon dynamics of the leaf-litter-soil continuum in the typical forests of the Changbai Mountain transect: an analysis of stable carbon isotope technology. Acta Ecologica Sinica, 2017,37(16):5285-5293. (in Chinese with English abstract)
doi: 10.5846/stxb201605190967
[16]   曹丽花,尹为玲,刘合满,等.西藏东南部色季拉山主要类型森林叶片和枯落物养分含量特征.生态学报,2019,39(11):4029-4038. DOI:10.5846/stxb201805301194
CAO L H, YIN W L, LIU H M, et al. Stoichiometric characteristics of leaves and litter in typical forest types on Sejila Mountain, southeastern Tibet. Acta Ecologica Sinica, 2019,39(11):4029-4038. (in Chinese with English abstract)
doi: 10.5846/stxb201805301194
[17]   CORY C C, DANIEL L. C?N?P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass?Biogeochemistry, 2007,85(3):235-252. DOI:10.1007/s10533-007-9132-0
doi: 10.1007/s10533-007-9132-0
[18]   张秋芳,陈奶寿,陈坦,等.不同恢复年限侵蚀红壤生态化学计量特征.中国水土保持科学,2016,14(2):59-66. DOI:10.16843/j.sswc.2016.02.008
ZHANG Q F, CHEN N S, CHEN T, et al. Ecological stoichiometry characteristics of eroded red soil in different restoration years. Science of Soil and Water Conservation, 2016,14(2):59-66. (in Chinese with English abstract)
doi: 10.16843/j.sswc.2016.02.008
[19]   秦仕忆,喻阳华,邢容容,等.喀斯特高原山地区水源涵养林土壤及凋落物的生态化学计量特征.林业资源管理,2017(5):66-73. DOI:10.13466/j.cnki.lyzygl.2017.05.012
QIN S Y, YU Y H, XING R R, et al. Stoichiometric characteristics of litter and soils in water conservation forests of karst plateau mountainous region. Forest Resources Management, 2017(5):66-73. (in Chinese with English abstract)
doi: 10.13466/j.cnki.lyzygl.2017.05.012
[20]   ALMAGRO M, MARTíNEZ-MENA M. Exploring short-term leaf-litter decomposition dynamics in a Mediterranean ecosystem: dependence on litter type and site conditions. Plant and Soil, 2012,358(1/2):323-335. DOI:10.1007/s11104-012-1187-6
doi: 10.1007/s11104-012-1187-6
[21]   H?TTENSCHWILER S, J?RGENSEN H B. Carbon quality rather than stoichiometry controls litter decom-position in a tropical rain forest. Journal of Ecology, 2010,98(4):754-763. DOI:10.1111/j.1365-2745.2010.01671.x
doi: 10.1111/j.1365-2745.2010.01671.x
[22]   WANG Y P, LAW R M, PAK B. A global model of carbon nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences, 2010,7(71):2261-2282. DOI:10.5194/bg-7-2261-2010
doi: 10.5194/bg-7-2261-2010
[23]   王晶苑,王绍强,李纫兰,等.中国四种森林类型主要优势植物的C∶N∶P化学计量学特征.植物生态学报,2011,35(6):587-595. DOI:10.3724/SP.J.1258.2011.00587
WANG J Y, WANG S Q, LI R L, et al. C∶N∶P stoichiometric characteristics of four forest types’ dominant tree species in China. Chinese Journal of Plant Ecology, 2011,35(6):587-595. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2011.00587
[24]   李路.天山北坡雪岭云杉林叶片-枯落物-土壤生态化学计量特征研究.乌鲁木齐:新疆大学,2019.
LI L. Study on the ecological stoichiometric characteristics of leaves-litter-soil system of Picea schrenkiana forests on the north slope of Tianshan Mountains. Urumqi: Xinjiang University, 2019. (in Chinese with English abstract)
[25]   王岚.老秃顶子古石河森林群落优势树种叶片、枯落物、土壤之间生态化学计量关系.辽宁,大连:辽宁师范大学,2019. DOI:10.18306/dlkxjz.2020.10.002
WANG L. Ecological stoichiometry between leaves, litter and soil of dominant speciess in the forest community of rock stream periglacial landform in Mt. Laotudingzi. Dalian, Liaoning: Liaoning Normal University, 2019. (in Chinese with English abstract)
doi: 10.18306/dlkxjz.2020.10.002
[26]   刘微.天童主要落叶和常绿树种叶片N、P化学计量学及分配特征研究.上海:华东师范大学,2014.
LIU W. Leaf N, P stoichiometry and allocation of main deciduous and evergreen tree species in Tiantong National Forest Park, Zhejiang Province, China. Shanghai: East China Normal University, 2014. (in Chinese with English abstract)
[27]   何高迅,王越,彭淑娴,等.滇中退化山地不同植被恢复下土壤碳氮磷储量与生态化学计量特征.生态学报,2020,40(13):4425-4435. DOI:10.5846/stxb201911152461
HE G X, WANG Y, PENG S X, et al. Soil carbon, nitrogen and phosphorus storage and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China. Acta Ecologica Sinica, 2020,40(13):4425-4435. (in Chinese with English abstract)
doi: 10.5846/stxb201911152461
[28]   刘玥,杨继松,于洋,等.辽河口不同类型湿地土壤碳氮磷生态化学计量学特征.生态学杂志,2020,39(9):3011-3020. DOI:10.13292/j.1000-4890.202009.007
LIU Y, YANG J S, YU Y, et al. Stoichiometric characteristics of carbon, nitrogen and phosphorus of soil in the Liaohe estuary wetlands. Chinese Journal of Ecology, 2020,39(9):3011-3020. (in Chinese with English abstract)
doi: 10.13292/j.1000-4890.202009.007
[29]   董从国,乔雨宁,曹扬,等.黄土高原不同植被带油松人工林生态化学计量特征及其影响因素.西北林学院学报,2020,35(3):1-8. DOI:10.3969/j.issn.1001-7461.2020.03.01
DONG C G, QIAO Y N, CAO Y, et al. Ecological stoichiometric characteristics and its influential factors in Pinus tabuliformis plantation under different vegetation zones in the Loess Plateau. Journal of Northwest Forestry University, 2020,35(3):1-8. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7461.2020.03.01
[30]   姜俊,陆元昌,秦永胜,等.北京平原地区不同人工林叶片-凋落物-土壤生态化学计量特征.生态环境学报,2020,29(4):702-708. DOI:10.16258/j.cnki.1674-5906.2020.04.008
JIANG J, LU Y C, QIN Y S, et al. Ecological stoichiometric characteristics of leaf-litter-soil for four dominant tree species in plain afforestation area, Beijing. Ecology and Environmental Sciences, 2020,29(4):702-708. (in Chinese with English abstract)
doi: 10.16258/j.cnki.1674-5906.2020.04.008
[31]   唐仕姗,杨万勤,王海鹏,等.中国森林凋落叶氮、磷化学计量特征及控制因素.应用与环境生物学报,2015,21(2):316-322. DOI:10.3724/SP.J.1145.2014.10040
TANG S S, YANG W Q, WANG H P, et al. Stoichiometric characteristics and controlling factors of N and P in forest litter in China. Chinese Journal of Applied and Environmental Biology, 2015,21(2):316-322. (in Chinese with English abstract)
doi: 10.3724/SP.J.1145.2014.10040
[32]   AERTS R, CHAPIN Ⅲ F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 1999,30:1-67. DOI:10.1016/S0065-2504(08)60016-1
doi: 10.1016/S0065-2504(08)60016-1
[33]   陆姣云,段兵红,杨梅,等.植物叶片氮磷养分重吸收规律及其调控机制研究进展.草业学报,2018,27(4):178-188. DOI:10.11686/cyxb2017223
LU J Y, DUAN B H, YANG M, et al. Research progress in nitrogen and phosphorus resorption from senesced leaves and the influence of ontogenetic and environmental factors. Acta Prataculturae Sinica, 2018,27(4):178-188. (in Chinese with English abstract)
doi: 10.11686/cyxb2017223
[34]   李荣华,汪思龙,王清奎.不同林龄马尾松针叶凋落前后养分含量及回收特征.应用生态学报,2008,19(7):1443-1447. DOI:10.13287/j.1001-9332.2008.0288
LI R H, WANG S L, WANG Q K. Nutrient contents and resorption characteristics in needles of different age Pinus massoniana (Lamb.) before and after withering. Chinese Journal of Applied Ecology, 2008,19(7):1443-1447. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.2008.0288
[1] Jian CHEN,Anna DING,Jiachun SHI. Spatio-temporal variation characteristics of soil pH, nitrogen, phosphorus and potassium nutrients in Wenling City of Zhejiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 517-526.
[2] Chaoyang MO,Xinlin ZHANG,Jingping YANG. Influence of rhizosphere priming effects on accumulation and decomposition of soil organic carbon[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(4): 527-533.
[3] Yuying LIU,Yan ZHANG,Zheyuan WANG,Tingqiang LI. Effects of combined application of nitrification inhibitors and biochars on nitrogen transformation and nitrogen use efficiency in paddy soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(2): 223-232.
[4] Tianyu WANG,Mei LIN,Zhoulin YAO,Peng WANG,Xinliang PING,Hua FANG. Dissipation characteristics and safety evaluation of spinetoram in red bayberry and soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 43-51.
[5] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[6] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[7] Jiujin XIAO,Litong YANG,Zhifu YANG,Qiuhong FENG,Lianghua CHEN,Zongda HU. Effects of simulated diesel contamination on soil fauna community[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 89-97.
[8] Jane MAKONI, Antony MAODZEKA, Can SUN, Devwattie DASS, Tianlun ZHAO, Shuijin ZHU, Jinhong CHEN. Effects of newly developed biodegradable liquid mulch on soil temperature, cotton seed germination and seedling growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 699-707.
[9] Fen CHEN,Gao YU,Hanqian WU,Jianwei HOU,Chenggang ZHAO. Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 737-747.
[10] Lilin YANG,Haiying YU,Jianwei HOU,Xiangmei ZHU. Fertilization strategies for cotton planted in coastal severe saline-alkali soils based on irrigation with saline water in winter[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 748-758.
[11] Peng HUO,Jianping LI,Xin YANG,Shucai XU,Xiaowen FAN. Structure design and field test of vibration swing type seedling lifting and soil cleaning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 618-624.
[12] Zichen XIANG,Haifeng XIU,Kun MA,Shaona YANG,Bin ZHONG,Jiawei MA,Zebin RUAN,Wenhao JIN,Han CAO,Yaqian LI,Gaoqi JIN,Wenxuan LUO,Dan LIU. Effect of different ameliorants on coastal saline-alkali soil in eastern Zhejiang under elution conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 344-359.
[13] Gangshuan BAI,Chaoyu ZOU,Sheni DU. Effects of dense-planting pattern of apple on soil moisture in Weibei dry plateau[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 308-318.
[14] Xinxia WANG,Jifeng WANG,Qiong HOU,Xiaojun WANG,Wuzhong NI. Effects of different fertilizing models on growth of single crop rice and nitrogen and phosphorus runoff losses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 225-233.
[15] Meihua DENG,Youwei ZHU,Lili DUAN,Jing SHEN,Ying FENG. Analysis on integrated remediation model of phytoremediation coupled with agro-production for heavy metal pollution in farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 135-150.