Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2021, Vol. 47 Issue (1): 43-51    DOI: 10.3785/j.issn.1008-9209.2020.07.151
Plant protection     
Dissipation characteristics and safety evaluation of spinetoram in red bayberry and soil
Tianyu WANG1(),Mei LIN1,Zhoulin YAO1,Peng WANG1,Xinliang PING1,Hua FANG2()
1.Citrus Research Institute of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Taizhou 318026, Zhejiang, China
2.Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(1557KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

To assess the environmental safety of applications of insecticide spinetoram in red bayberry, the analytical method and residue dynamics as well as final residues in the red bayberry and soil were investigated in Zhejiang and Fujian for two years. The plant samples were extracted with acetonitrile, cleaned up with primary secondary amine (PSA) sorbent and anhydrous magnesium sulfate, and analyzed by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The soil samples were extracted with water-acetonitrile, cleaned up with PSA sorbent and analyzed by UPLC-MS/MS, and quantified by external standard method. The results showed good linearity (R2>0.999) between concentration and peak area when the concentrations of spinetoram ranged from 0.001 to 0.5 mg/L. When the spiked levels ranged from 0.005 to 0.5 mg/kg, the average recoveries in the red bayberry were in the range of 89.40% to 101.85%, with relative standard deviations (RSDs) of 3.63%-7.25%; the average recoveries in the soil were in the range of 95.09% to 102.66%, with RSDs of 3.05%-3.61%; the limit of detection (LOD) was 5.2×10-5 mg/kg, while the limits of quantification (LOQs) were 5.0×10-3 mg/kg for the red bayberry and soil. When the red bayberry was sprayed with 60 mg/L spinetoram suspension concentrate at the 1.5 times of the recommended maximum dosage at fruit color-changed period (one time), the dissipation dynamics of spinetoram in the red bayberry and soil were in accordance with the first-order kinetic equation, and the dissipation half lives of spinetoram residues were 4.4-5.2 and 1.2-1.9 d in the red bayberry and soil, respectively, belonging to degradable pesticide. The final residues were 0.073-0.353 mg/kg in the red bayberry and less than the limit of quantification-0.094 mg/kg in the soil at 7 d after spraying. In conclusion, the methods are fast, accurate and sensitive for detection of spinetoram residues in the red bayberry and soil, and the dissipation half lives of spinetoram are short after using the concentration and times recommended by the field experiment, and the final residues are lower than the maximum residue limit of red bayberry stipulated by national standard (1 mg/kg). Therefore, it is safe to use spinetoram for the pest control of red bayberry tree in preharvest interval.



Key wordsspinetoram      ultra performance liquid chromatography-tandem mass spectrometry      red bayberry      soil      residue      dissipation dynamics     
Received: 15 July 2020      Published: 09 March 2021
CLC:  S  
Corresponding Authors: Hua FANG     E-mail: wangtianyu2011@163.com;agri@zju.edu.cn
Cite this article:

Tianyu WANG,Mei LIN,Zhoulin YAO,Peng WANG,Xinliang PING,Hua FANG. Dissipation characteristics and safety evaluation of spinetoram in red bayberry and soil. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 43-51.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2020.07.151     OR     http://www.zjujournals.com/agr/Y2021/V47/I1/43


乙基多杀菌素在杨梅果实和土壤中的残留消解特征及其安全性评价

为明确乙基多杀菌素在杨梅园中使用后的环境安全性,建立了杨梅和土壤中乙基多杀菌素的残留分析方法,并在浙江和福建2地进行了为期2年的乙基多杀菌素在杨梅果实和土壤中的残留消解规律研究。植物样品采用乙腈作为提取剂,N-丙基乙二胺和无水硫酸镁作为分散净化剂;土壤样品用水和乙腈作为提取剂,用N-丙基乙二胺进行净化,利用超高效液相色谱-串联质谱法检测,通过外标法定量。结果表明:乙基多杀菌素在0.001~0.5 mg/L范围内的质量浓度和峰面积之间具有良好的线性关系(R2>0.999);在0.005~0.5 mg/kg 添加水平下,乙基多杀菌素在杨梅果实中的平均回收率为89.40%~101.85%,相对标准偏差为3.63%~7.25%;其在土壤中的平均回收率为95.09%~102.66%,相对标准偏差为3.05%~3.61%;在杨梅果实和土壤中其定量限均为5.0×10-3 mg/kg,检测限均为5.2×10-5 mg/kg。消解动态试验结果表明:按1.5倍的最高推荐剂量(60 mg/L)于杨梅刚开始转色时喷施1次,乙基多杀菌素在杨梅果实和土壤中的消解动态均符合一级动力学方程,其半衰期分别为4.4~5.2和1.2~1.9 d,属于易降解性农药。田间最终残留试验结果显示,7 d后,乙基多杀菌素在杨梅果实中的残留量为0.073~0.353 mg/kg,在土壤中的残留量为低于定量限~0.094 mg/kg。综上所述,采用该方法能够实现杨梅和土壤中乙基多杀菌素的残留检测,简便、准确、灵敏度高;按照田间试验推荐的使用浓度和次数后,乙基多杀菌素的降解半衰期短,其最终残留量远低于国标规定的在杨梅中的最大临时限量标准(1 mg/kg),说明乙基多杀菌素在安全间隔期内用于杨梅树上害虫防治是安全的。


关键词: 乙基多杀菌素,  超高效液相色谱-串联质谱法,  杨梅果实,  土壤,  残留,  消解动态 

化合物

Compound

保留时间

Retention time/min

离子对

Ion pair (m/z)

驻留时间

Dwell time/ms

去簇电压

Declustering potential/V

碰撞能量

Collision energy/eV

XDE-175-J5.63748.4/142.4*1007030
748.4/203.21007039
XDE-175-L5.74760.4/142.4*1007030
760.4/203.21007039
Table 1 UPLC-MS/MS parameters for spinetoram

样品

Sample

添加水平

Spiked level/(mg/kg)

回收率 Recovery/%

平均回收率

Average recovery/%

相对标准偏差

RSD/%

12345

杨梅果实

Red bayberry

0.00588.3593.5492.0786.5486.4889.403.63
0.0598.07109.4094.12110.1497.54101.857.25
0.594.5291.5692.60101.1094.0894.773.93

土壤

Soil

0.00596.5499.1793.6791.5494.5195.093.05
0.05103.8498.42101.1395.7696.7999.193.32
0.598.46106.78105.17103.7899.09102.663.61
Table 2 Recoveries and relative standard deviations (RSDs) of spinetoram in red bayberry and soil
Fig. 1 Extracted ion current chromatograms of spinetoram at multiple response monitoring modes

样品

Sample

净化方法

Purification method

仪器方法

Instrument

method

定量限

Limit of

quantitation/(mg/kg)

检测限

Limit of

detection/(mg/kg)

文献

Reference

杨梅果实

Red bayberry

N-丙基乙二胺 PSAUPLC-MS/MS5.0×10-35.2×10-5

本研究

This study

土壤 SoilN-丙基乙二胺 PSAUPLC-MS/MS5.0×10-35.2×10-5
水稻植株 Rice strawN-丙基乙二胺 PSAUPLC-MS/MS5.0×10-31.0×10-3[10]
番茄 TomatoN-丙基乙二胺 PSAHPLC4.0×10-21.0×10-2[11]
蔬菜 Vegetable固相萃取 Solid phase extractionHPLC-MS/MS3.0×10-21.0×10-2[13]
枸杞 Wolfberry乙腈-过滤膜 Acetonitrile-filter membraneUPLC-MS/MS5.0×10-22.5×10-2[15]
Table 3 Sensitivity comparisons of spinetoram in samples
Fig. 2 Dissipation dynamics of spinetoram in red bayberry
Fig. 3 Dissipation dynamics of spinetoram in soil

样品

Sample

地点

Location

年份

Year

一级动力学方程

First-order kinetic equation

相关系数

r

半衰期

Half life/d

杨梅果实

Red bayberry

浙江

Zhejiang

2017ct=0.258 2e-0.155 1t0.950 64.5
2018ct=0.254 2e-0.134 4t0.924 65.2

福建

Fujian

2017ct=0.402 0e-0.156 6t0.992 34.4
2018ct=0.342 7e-0.144 7t0.950 74.8

土壤

Soil

浙江

Zhejiang

2017ct=0.055 7e-0.584 0t0.995 11.2
2018ct=0.062 5e-0.373 8t0.982 71.9

福建

Fujian

2017ct=0.078 1e-0.471 6t0.987 71.5
2018ct=0.088 2e-0.396 5t0.993 11.7
Table 4 Dissipation dynamic equations and half lives of spinetoram in red bayberry and soil

地点

Location

pH

有机质

OM/(g/kg)

水解性氮

HN/(mg/kg)

有效磷

AP/(mg/kg)

速效钾

AK/(mg/kg)

交换性钙

ECa/(cmol/kg)

交换性镁

EMg/(cmol/kg)

有效硼

AB/(mg/kg)

全盐量TSC/(g/kg)

浙江

Zhejiang

6.1735.1201.21158609.610.571.590.4

福建

Fujian

4.8037.4216.7754082.150.800.920.4
Table 5 Physicochemical properties of soil from Zhejiang and Fujian

施药剂量

Spray dosage/(mg/L)

施药次数

Spray times

距末次施药后采样时间

Time after the

final spraying/d

残留量 Residue/(mg/kg)
浙江 Zhejiang福建 Fujian
2017201820172018
40270.1100.2080.0940.223
140.0330.1040.0390.058
210.0210.0470.0140.018
370.1130.2230.1340.324
140.0310.1520.0310.108
210.0130.0680.0180.046
60270.0730.3530.0840.237
140.0420.1150.0410.108
210.0120.0510.0150.039
370.2730.2170.1230.266
140.1370.0790.0270.122
210.0680.0220.0170.036
Table 6 Final residue of spinetoram in red bayberry

施药剂量

Spray dosage/(mg/L)

施药次数

Spray times

距末次施药后采样时间

Time after the

final spraying/d

残留量 Residue/(mg/kg)
浙江 Zhejiang福建 Fujian
2017201820172018
40270.0210.079ND0.094
14ND0.011ND0.011
21NDNDNDND
37ND0.0520.0310.072
14ND0.022NDND
21NDNDNDND
60270.0280.0210.0380.036
14NDNDND0.009
21NDNDNDND
370.0510.0500.0420.043
140.0330.013NDND
21NDNDNDND
Table 7 Final residue of spinetoram in soil
[1]   谢焕雄,王海鸥,胡志超,等.我国杨梅生产与贮藏加工现状.食品研究与开发,2007,28(6):162-164.
XIE H X, WANG H O, HU Z C, et al. Statue of waxberry’s producing, storaging and processing in China. Food Research and Development, 2007,28(6):162-164. (in Chinese with English abstract)
[2]   颜丽菊,徐春燕.杨梅栽培.北京:中国农业科学技术出版社,2007.
YAN L J, XU C Y. Cultivation of Waxberry. Beijing: China Agricultural Science and Technology Press, 2007. (in Chinese)
[3]   ORR N, SHAFFNER A J, RICHEY K, et al. Novel mode of action of spinosad: receptor binding studies demonstrating lack of interaction with known insecticidal target sites. Pesticide Biochemistry and Physiology, 2009,95(1):1-5. DOI:10.1016/j.pestbp.2009.04.009
doi: 10.1016/j.pestbp.2009.04.009
[4]   邱永林,陆致平.乙基多杀菌素防治夜蛾类害虫效果好.农药快讯,2012,545(16):37.
QIU Y L, LU Z P. Good effect of spinetoram on the control of noctuid pests. Pesticide Bulletin, 2012,545(16):37. (in Chinese)
[5]   朱秦.陶氏益农公司获得杀虫剂乙基多杀菌素的第一个全球登记.农药市场信息,2007(21):25.
ZHU Q. Dow AgroSciences receives first global registration for spinetoram insecticide. Pesticide Market News, 2007(21):25. (in Chinese)
[6]   付步礼,唐良德,邱海燕,等.黄胸蓟马高效低毒防治新型药剂的筛选.果树学报,2016,33(4):473-481. DOI:10.13925/j.cnki.gsxb.20150399
FU B L, TANG L D, QIU H Y, et al. Screening of high effect and low toxicity insecticides for controlling Thrips hawaiiensis Morgan. Journal of Fruit Science, 2016,33(4):473-481. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.20150399
[7]   邵佳佳,章伟杰,吴丽莹,等.乙基多杀菌素防治杨梅果蝇的效果试验.浙江农业科学,2016,57(1):112-113. DOI:10.16178/j.issn.0528-9017.20160142
SHAO J J, ZHANG W J, WU L Y, et al. Experimental study of spinetoram on the control of waxberry drosophilid. Journal of Zhejiang Agricultural Science, 2016,57(1):112-113. (in Chinese)
doi: 10.16178/j.issn.0528-9017.20160142
[8]   李学斌,王林云.艾绿士等对杨梅采前病虫的防治试验.浙江柑橘,2014,31(2):36-38. DOI:10.3969/j.issn.1009-0584.2014.02.015
LI X B, WANG L Y. Experiment on the control of diseases and insect pests of waxberry before harvest. Zhejiang Citrus, 2014,31(2):36-38. (in Chinese)
doi: 10.3969/j.issn.1009-0584.2014.02.015
[9]   夏西亚,付步礼,李强,等.乙基多杀菌素在香蕉果实、花瓣和土壤中的残留及消解动态分析.热带作物学报,2017,38(7):1331-1336. DOI:10.16178/j.issn.0528-9017.20160142
XIA X Y, FU B L, LI Q, et al. Analysis of insecticide residue and digestion dynamics of spinetoram in banana fruits, petals and soil. Chinese Journal of Tropical Crops, 2017,38(7):1331-1336. (in Chinese with English abstract)
doi: 10.16178/j.issn.0528-9017.20160142
[10]   陈国,朱勇,赵健,等.乙基多杀菌素在稻田水、土壤和水稻植株中的残留及消解动态.农药学学报,2014,16(2):153-158. DOI:10.3969/j.issn.1008-7303.2014.02.07
CHEN G, ZHU Y, ZHAO J, et al. Residue and decline dynamics of spinetoram in paddy water, soil and rice straw. Chinese Journal of Pesticide Science, 2014,16(2):153-158. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-7303.2014.02.07
[11]   MALHAT F M. Simultaneous determination of spinetoram residues in tomato by high performance liquid chromatography combined with QuEChERS method. Bulletin of Environmental Contamination and Toxicology, 2013,90:222-226. DOI:10.1007/s00128-012-0885-3
doi: 10
[12]   张晓燕,邓树华,黄卫,等.乙基多杀菌素的高效液相色谱测定.粮食科技与经济,2013,38(1):37-39. DOI:10.3969/j.issn.1007-1458.2013.01.046
ZHANG X Y, DENG S H, HUANG W, et al. Determination of spinetoram by high performance liquid chromatography. Grain Science and Technology and Economy, 2013,38(1):37-39. (in Chinese)
doi: 10.3969/j.issn.1007-1458.2013.01.046
[13]   LIU X, EL-ATY A M A, PARK J Y, et al. Determination of spinetoram in leafy vegetable crops using liquid chromatography and confirmation via tandem mass spectrometry. Biomedical Chromatography, 2011,25(10):1099-1106. DOI:10.1002/bmc.1577
doi: 10.1002/bmc.1577
[14]   赵瑶瑶,秦旭,秦冬梅,等.XDE-175及其代谢物在甘蓝和土壤中的残留动态研究.农业环境科学学报,2009,28(5):1032-1036.
ZHAO Y Y, QIN X, QIN D M, et al. Residue dynamics of XDE-175 and its metabolites in cabbage and soil. Journal of Agro-Environment Science, 2009,28(5):1032-1036. (in Chinese with English abstract)
[15]   刘赛,李建领,陈君,等.乙基多杀菌素在宁夏枸杞中降解动态研究.中国中药杂志,2016,41(10):1815-1818. DOI:10.4268/cjcmm20161009
LIU S, LI J L, CHEN J, et al. Residue degradation dynamics of spinetoram in wolfberry. China Journal of Chinese Materia Medica, 2016,41(10):1815-1818. (in Chinese with English abstract)
doi: 10.4268/cjcmm20161009
[16]   中华人民共和国农业部.化学农药环境安全评价试验准则:GB/T31270.1—2014.北京:中国标准出版社,2014.
The Ministry of Agriculture of the People’s Republic of China. Test Guidelines on Environmental Safety Assessment for Chemical Pesticide: GB/T31270.1—2014. Beijing: Standards Press of China, 2014. (in Chinese)
[17]   华乃震.绿色环保生物杀虫剂多杀霉素和乙基多杀菌素的述评.农药,2015,54(1):1-5.
HUA N Z. A review of green biological insecticide spinosad and spinetoram. Agrochemicals, 2015,54(1):1-5. (in Chinese with English abstract)
[18]   李能威,张晓琳.多杀菌素在农产品中的残留研究进展.食品科学,2012,33(21):328-331.
LI N W, ZHANG X L. Research progress of spinosad residues in agricultural products. Food Science, 2012,33(21):328-331. (in Chinese with English abstract)
[19]   MAHMOUD M F, OSMANM A M, BAHGAT I M, et al. Efficiency of spinetoram as a biopesticide to onion thrips (Thrips tabaci Lindeman) and green peach aphid (Myzus persicae Sulzer) under laboratory and field conditions. Journal of Biopesticides, 2009,2(2):223-227.
[20]   吴琼,李建国,吕岱竹,等.超高效液相色谱法测定土壤中多杀菌素和乙基多杀菌素的残留.农药学学报,2015,17(1):111-114. DOI:10.3969/j.issn.1008-7303.2015.01.16
WU Q, LI J G, Lü D Z, et al. Determination of spinosad and spinetoram residues in soil by ultra performance liquid chromatography (UPLC). Chinese Journal of Pesticide Science, 2015,17(1):111-114. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-7303.2015.01.16
[21]   吴淑春,梁赤周,虞淼,等.乙基多杀菌素及其代谢物在杨梅中的残留及消解动态.农药科学与管理,2019,40(3):40-47. DOI:10.3969/j.issn.1002-5480.2019.03.010
WU S C, LIANG C Z, YU M, et al. Residue and decline of spinetoram and its metabolites in red bayberry. Pesticide Science and Administration, 2019,40(3):40-47. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-5480.2019.03.010
[22]   食品安全国家标准 食品中农药最大残留限量:GB2763—2019.北京:中国农业出版社,2019.
National Food Safety Standard:Maximum Residue Limits for Pesticides in Food: GB 2763—2019. Beijing: China Agriculture Press, 2019. (in Chinese)
[1] Jing ZHANG,Qian ZHOU,Yushi GAO,Xiujun TANG,Junxian LU,Lina MA,Dawei CHEN,Mengjun TANG. Residue depletion laws of florfenicol and its metabolite florfenicol amine in eggs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 127-134.
[2] Gangshuan BAI,Sheni DU,Qingfeng MIAO. Effects of supplementary irrigation on the growth of film-mulched spring wheat in Hetao irrigation area during heading stage[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 21-31.
[3] Wenxian ZOU,Yuning ZHOU,Siting GU,Tuhai HUANG,Yuyou ZHI,Long MENG,Jiachun SHI,Jian CHEN,Jianming XU. Effect of flooding in critical stage on cadmium accumulation and translocation of rice in different paddy soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 74-88.
[4] Jiujin XIAO,Litong YANG,Zhifu YANG,Qiuhong FENG,Lianghua CHEN,Zongda HU. Effects of simulated diesel contamination on soil fauna community[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(1): 89-97.
[5] Jane MAKONI, Antony MAODZEKA, Can SUN, Devwattie DASS, Tianlun ZHAO, Shuijin ZHU, Jinhong CHEN. Effects of newly developed biodegradable liquid mulch on soil temperature, cotton seed germination and seedling growth[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 699-707.
[6] Fen CHEN,Gao YU,Hanqian WU,Jianwei HOU,Chenggang ZHAO. Effects of bio-organic fertilizer made from Chinese traditional herb residues on heavy metal passivation in Cd and Hg compound-contaminated soils[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 737-747.
[7] Lilin YANG,Haiying YU,Jianwei HOU,Xiangmei ZHU. Fertilization strategies for cotton planted in coastal severe saline-alkali soils based on irrigation with saline water in winter[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(6): 748-758.
[8] Peng HUO,Jianping LI,Xin YANG,Shucai XU,Xiaowen FAN. Structure design and field test of vibration swing type seedling lifting and soil cleaning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 618-624.
[9] Zichen XIANG,Haifeng XIU,Kun MA,Shaona YANG,Bin ZHONG,Jiawei MA,Zebin RUAN,Wenhao JIN,Han CAO,Yaqian LI,Gaoqi JIN,Wenxuan LUO,Dan LIU. Effect of different ameliorants on coastal saline-alkali soil in eastern Zhejiang under elution conditions[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 344-359.
[10] Gangshuan BAI,Chaoyu ZOU,Sheni DU. Effects of dense-planting pattern of apple on soil moisture in Weibei dry plateau[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 308-318.
[11] Xinxia WANG,Jifeng WANG,Qiong HOU,Xiaojun WANG,Wuzhong NI. Effects of different fertilizing models on growth of single crop rice and nitrogen and phosphorus runoff losses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 225-233.
[12] Meihua DENG,Youwei ZHU,Lili DUAN,Jing SHEN,Ying FENG. Analysis on integrated remediation model of phytoremediation coupled with agro-production for heavy metal pollution in farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 135-150.
[13] Li FU,Ying LU,Yingzhong XIE,Hongbin MA,Ende XING,Xiumin TIAN,Minghe NIE. Impact of short-term rest-grazing on vegetation and soil characteristics of family ranch in desert steppe area[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 563-573.
[14] Caiyun PENG,Ge WANG,Bo ZHAO,Xingyan LIAO,Jian ZHANG,Jiujin XIAO,Chenjun MU. Community structure characteristics of medium- and small-sized soil faunas in typical artificial plantations in the upper reaches of Yangtze River[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(5): 585-595.
[15] Xufeng FEI,Zhouqiao REN,Zhaohan LOU,Rui XIAO,Xiaonan Lü. Prediction of soil heavy metal content under spatial scale based on Bayesian maximum entropy and auxiliary information[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(4): 452-459.