Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (4): 489-499    DOI: 10.3785/j.issn.1008-9209.2019.08.301
Animal sciences & veterinary medicine     
Growth of white shrimp (Litopenaeus vannamei) and environmental variation in greenhouse ponds located in Zhoushan City of Zhejiang Province
Lingzi LU(),Yunmeng LI,Yan WANG()
Ocean College, Zhejiang University, Zhoushan 316200, Zhejiang, China
Download: HTML   HTML (   PDF(1476KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to optimize prawn breeding mode, growth of white shrimp (Litopenaeus vannamei), phytoplankton species and environmental variation in six greenhouse ponds located in Zhoushan City of Zhejiang Province were monitored at the interval of 15 d between August 16 and October 30, 2017. The results showed that the body length (L/cm) and body mass (m/g) of the white shrimp increased with the breeding time (t/d), and the regression equations were described as L=0.744 9×t0.594 6 and m=0.004 2×t1.823 7, respectively. During the investigation period, water temperature and pH in the ponds decreased with the prolongation of time. The reactive phosphate (PO43-P) and total phosphorus (TP) contents in the ponds significantly increased after the 15th day of stocking the shrimp seed. The total ammonia nitrogen (TAN), total nitrogen (TN) contents and five-day biochemical oxygen demand (BOD5) value significantly increased, while the total alkalinity (TA) significantly decreased, after the 30th day of stocking the shrimp seed. The chemical oxygen demand (CODMn) value significantly increased, while the dissolved oxygen (DO) value declined, after the 45th day of stocking the shrimp seed. The species of Chlorophyta, Cyanophyta, Bacillariophyta and Euglenophytadominated in the ponds. Chlorophyll a (Chl a) content increased from the 0th to the 30th day after stocking the shrimp seed and then gradually declined. Growth rate in body length or body mass of the shrimp positively correlated to nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), TN, PO43-P, TP, Chl a contents, and CODMn, BOD5 values, but negatively correlated to water temperature, DO value, pH and TA. These results suggest that water temperature, DO, pH and TA might be the environmental factors regulating growth of the white shrimp reared in the greenhouse ponds. Abnormally high water temperature in summer might limit growth of the white shrimp, and maintaining pH constant should be an important aspect in water quality management.



Key wordsLitopenaeus vannamei      greenhouse pond      nitrogen      phosphorus      organic matter      phytoplankton     
Received: 30 August 2019      Published: 11 September 2020
CLC:  S 968.22  
Corresponding Authors: Yan WANG     E-mail: 1261026031@qq.com;ywang@zju.edu.cn
Cite this article:

Lingzi LU,Yunmeng LI,Yan WANG. Growth of white shrimp (Litopenaeus vannamei) and environmental variation in greenhouse ponds located in Zhoushan City of Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 489-499.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.08.301     OR     http://www.zjujournals.com/agr/Y2020/V46/I4/489


浙江省舟山市温室养殖池塘中凡纳滨对虾(Litopenaeus vannamei)的生长与环境变化

2017年8月16日至10月30日,按15 d间隔周期对浙江省舟山市6口温室池塘内养殖的凡纳滨对虾生长情况、浮游植物群落和理化环境变化进行观测,旨在为优化对虾养殖模式提供科学依据。结果表明:对虾体长(L/cm)和体质量(m/g)与养殖时间(t/d)的关系分别满足回归方程L=0.744 9×t0.594 6m=0.004 2×t1.823 7。池塘内水温和pH随时间延长呈下降的趋势。放养虾苗15 d后池塘内活性磷酸盐和总磷含量明显升高;30 d后氨态氮、总氮和5日生化需氧量明显升高,总碱度趋于下降;45 d后化学需氧量明显增加,溶解氧趋于下降。池塘内浮游植物优势种为绿藻、蓝藻、硅藻和裸藻门的种类。放养虾苗后30 d内叶绿素a含量逐渐升高,之后逐渐降低。对虾体长和体质量增长速率与亚硝态氮、硝态氮、总氮、活性磷酸盐、总磷、叶绿素a含量及化学需氧量和5日生化需氧量呈正相关,与水温、溶解氧值、pH和总碱度呈负相关。根据上述结果,初步认为水温、溶解氧、pH和总碱度可能是限制舟山温室养殖池塘内凡纳滨对虾生长的环境因子。夏季高温可导致对虾生长缓慢,而维持pH稳定应是池塘水质管理中需要重视的问题。


关键词: 凡纳滨对虾,  温室池塘,  氮,  磷,  有机质,  浮游植物 
Fig. 1 Variation in body length and body mass of white shrimp in the pondsDifferent lowercase letters in the figure indicate significant differences atthe 0.05 probability level.
Fig. 2 Variation in water temperature (WT), dissolved oxygen (DO), pH and total alkalinity (TA) in the white shrimp pondsDifferent lowercase letters above the bars indicate significant differences atthe 0.05 probability level; n=6.
Fig. 3 Variation in nitrogen, phosphorus and organic matter contents in the white shrimp pondsDifferent lowercase letters above the bars indicate significant differences atthe 0.05 probability level; n=6.
门 Phylum种 SpeciesS1S2S3S4S5S6
蓝藻 Cyanophyta颤藻 Oscillatoria sp.++
螺旋藻 Spirulina sp.+++
色球藻 Chroococcus sp.++++
集胞藻 Synechocystis sp.+++++
念珠藻 Nostoc sp.+++
绿藻 Chlorophyta小球藻 Chlorella sp.++++
四链藻 Tetradesmus sp.++++
十字藻 Crucigenia sp.++++
四角藻 Tetraedron sp.++
蹄形藻 Kirehneriella sp.+
四球藻 Tetrachlorella sp.+++++
卵囊藻 Oocystis sp.++++++
双胞藻 Geminella sp.+++
丝藻 Ulothrix sp.++++
胶囊藻 Gloeocystis sp.++++++
硅藻 Bacillariophyta小环藻 Cyclotella sp.++++++
舟形藻 Navicula sp.++
针杆藻 Synedra sp.++
等片藻 Diatoma sp.+++++
肋缝藻 Frustulia sp.++
裸藻 Euglenophyta裸藻 Euglena sp.+
陀螺藻 Strombomonas sp.+++++
甲藻 Dinophyta多甲藻 Peridinium sp.++
Table 1 Phytoplankton species identified from the white shrimp ponds
Fig. 4 Phytoplankton biomass and chlorophylla content in the white shrimp ponds
Fig. 5 Temporal variation of chlorophyll a content in the white shrimp pondsDifferent lowercase letters above the bars indicate significant differences atthe 0.05 probability level; n=6.
Fig. 6 Relationships between white shrimp growth and environmental factors in the ponds based on redundancy analysis (RDA)
Fig. 7 Relationships between chlorophyll a and abiotic environmental factors in the white shrimp ponds
[1]   Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals. Rome: Food and Agriculture Organization of the United Nations, 2018.
[2]   CHAI X J, JI W X, HAN H, et al. Growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica Temminck and Schlegel, fed at different dietary protein and lipid levels. Aquaculture Nutrition, 2013,19:928-935. DOI:10.1111/anu.12038
doi: 10.1111/anu.12038
[3]   杨世平,邱德全.对虾高密度养殖过程中水质的周期变化与分析.水产科学,2006,25(9):459-462.
YANG S P, QIU D Q. Water quality in the high-density shrimp culturing ponds. Fisheries Science, 2006,25(9):459-462. (in Chinese with English abstract)
[4]   黄翔鹄,王庆恒.对虾高位池优势浮游植物种群与成因研究.热带海洋学报,2002,21(4):36-44.
HUANG X H, WANG Q H. A study on dominant phytoplankton species in high-level prawn ponds and its formation cause. Journal of Tropical Oceanography, 2002,21(4):36-44. (in Chinese with English abstract)
[5]   韦璐,江敏,余根鼎,等.凡纳滨对虾养殖塘叶绿素a与水质因子主成分多元线性回归分析.中国水产科学,2012,19(4):620-625. DOI:10.3724/SP.J.1118.2012.00620
WEI L, JIANG M, YU G D, et al. Exploring the influence of water quality parameters on chlorophyll-a in Litopenaeus vannamei culture ponds using the method of multiple linear regression of principal components. Journal of Fishery Sciences of China, 2012,19(4):620-625. (in Chinese with English abstract)
doi: 10.3724/SP.J.1118.2012.00620
[6]   农业农村部渔业渔政管理局.中国渔业统计年鉴.北京:中国农业出版社,2018.
Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs. China Fishery Statistical Yearbook. Beijing: China Agriculture Press, 2018. (in Chinese)
[7]   刘永士,臧维玲,侯文杰,等.凡纳滨对虾生长及养殖池氮、磷收支随养殖时间的变化.大连海洋大学学报,2013,28(2):143-147. DOI:10.3724/SP.J.1238.2011.00526
LIU Y S, ZANG W L, HOU W J, et al. Changes in growth of Pacific white leg shrimp Litopenaeus vannamei, and nitrogen and phosphorus budgets with culture time. Journal of Dalian Ocean University, 2013,28(2):143-147. (in Chinese with English abstract)
doi: 10.3724/SP.J.1238.2011.00526
[8]   王旭娜,江敏,钟锐,等.凡纳滨对虾养殖池塘中浮游植物群落结构与水质因子的关系.水产学报,2018,42(11):1787-1803. DOI:10.11964/jfc.20171211087
WANG X N, JIANG M, ZHONG R, et al. The relationship between phytoplankton community structure and water quality factors in the pond of Litopenaeus vannamei. Journal of Fisheries of China, 2018,42(11):1787-1803. (in Chinese with English abstract)
doi: 10.11964/jfc.20171211087
[9]   谢立民,林小涛,许忠能,等.不同类型虾池的理化因子及浮游植物群落的调查.生态科学,2003,22(1):34-37.
XIE L M, LIN X T, XU Z N, et al. Phytoplankton communities and physical and chemical factors in different types of shrimp ponds. Ecologic Science, 2003,22(1):34-37. (in Chinese with English abstract)
[10]   李云梦,郑侠飞,王岩,等.绍兴市凡纳滨对虾围垦滩涂养殖池塘的理化环境和浮游植物.渔业现代化,2017,44(6):1-8. DOI:10.3969/j.issn.1007-9580.2017.06.001
LI Y M, ZHENG X F, WANG Y, et al. Physicochemical environment and phytoplankton in Litopenaeus vannamei ponds located in the diked tidal flat in Shaoxing City. Fishery Modernization, 2017,44(6):1-8. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-9580.2017.06.001
[11]   国家环境保护总局.水和废水监测分析方法.4版.北京:中国环境科学出版社,2002.
State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods. 4th ed. Beijing: China Environmental Science Press, 2002. (in Chinese)
[12]   国家海洋局.海洋监测规范:GB 17378.4—1998.北京:海洋出版社,1998.
State Oceanic Administration. Specification for Marine Monitoring: GB 17378.4—1998. Beijing: China Ocean Press, 1998. (in Chinese)
[13]   胡鸿钧,魏印心.中国淡水藻类:系统、分类及生态.北京:科学出版社,2006.
HU H J, WEI Y X. The Freshwater Algae of China: Systematics, Taxonomy and Ecology. Beijing: Science Press, 2006. (in Chinese)
[14]   章宗涉,黄祥飞.淡水浮游生物研究方法.北京:科学出版社,1991.
ZHANG Z S, HUANG X F. Methods for the Study of Freshwater Plankton. Beijing: Science Press, 1991. (in Chinese)
[15]   徐炳庆,吕振波,李战军,等.莱州湾中国对虾生长特性及其空间分布.生态学报,2016,36(3):803-810. DOI:10.5846/stxb201404290854
XU B Q, Lü Z B, LI Z J, et al. The growth characteristics and spatial distribution of Fenneropenaeus chinensis in Laizhou Bay. Acta Ecologica Sinica, 2016,36(3):803-810. (in Chinese with English abstract)
doi: 10.5846/stxb201404290854
[16]   EBELING J M, TIMMONS M B, BISOGNI J J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 2006,257(1/2/3/4):346-358. DOI:10.1016/j.aquaculture.2006.03.019
doi: 10.1016/j.aquaculture.2006.03.019
[17]   CHEN S L, LING J, BLANCHETON J P. Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering, 2006,34(3):179-197. DOI:10.1016/j.aquaeng.2005.09.004
doi: 10.1016/j.aquaeng.2005
[18]   刘盼,贾成霞,杨慕,等.2种微藻对养殖水体中氨氮和亚硝态氮的净化作用.水产科学,2018,37(3):389-393. DOI:10.16378/j.cnki.1003-1111.2018.03.017
LIU P, JIA C X, YANG M, et al. Removal of ammonia and nitrite nitrogen in aquaculture water by two species of microalgae. Fisheries Science, 2018,37(3):389-393. (in Chinese with English abstract)
doi: 10.16378/j.cnki.1003-1111.2018.03.017
[19]   刘梅,原居林,何海生,等.微藻在南美白对虾养殖废水中的生长及净化效果.应用与环境生物学报,2018,24(4):866-872. DOI:10.19675/j.cnki.1006-687x.2017.11012
LIU M, YUAN J L, HE H S, et al. Removal of nitrogen and phosphorus by eight strains of microalgae and their growth characteristics in Penaeus vannamei sewage. Chinese Journal of Applied and Environmental Biology, 2018,24(4):866-872. (in Chinese with English abstract)
doi: 10.19675/j.cnki.1006-687x.2017.11012
[20]   李雪松,梁君荣,陈长平,等.泉州湾虾池浮游植物种类多样性研究.厦门大学学报(自然科学版),2006,45():234-239.
LI X S, LIANG J R, CHEN C P, et al. Species diversity of phytoplanktons in shrimp aquiculture areas in the Quanzhou Bay, Fujian Province. Journal of Xiamen University (Natural Science), 2006,45():234-239. (in Chinese with English abstract)
[21]   李卓佳,张汉华,郭志勋,等.虾池浮游微藻的种类组成、数量和多样性变动.湛江海洋大学学报,2005,25(3):29-34.
LI Z J, ZHANG H H, GUO Z X, et al. Species composition, quantity variation and bio-diversities of phytoplankton in shrimp culture ponds. Journal of Zhanjiang Ocean University, 2005,25(3):29-34. (in Chinese with English abstract)
[22]   杨燕,朱雪竹,张民,等.不同藻类对温度与磷叠加作用的响应模式.湖泊科学,2016,28(4):843-851. DOI:10.18307/2016.0418
YANG Y, ZHU X Z, ZHANG M, et al. Response patterns of different algae to the interaction between temperature and phosphorus. Journal of Lake Sciences, 2016,28(4):843-851. (in Chinese with English abstract)
doi: 10.18307/2016.0418
[23]   DARLEY W M. Algal Biology: A Physiological Approach. London: Blackwell Scientific Publication, 1982.
[24]   GUILDFORD S J, HECKY R E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography, 2000,45(6):1213-1223.
[25]   秦镕聪,肖艳,郭劲松,等.三峡库区澎溪河典型优势藻细胞N/P比与限制性评价的原位分析.湖泊科学,2018,30(5):1284-1294. DOI:10.18307/2018.0511
QIN R C, XIAO Y, GUO J S, et al. In situ research of relationship between cellular N/P of dominate algae species and limitation evaluation in Pengxi River of the Three Gorges Reservoir. Journal of Lake Science, 2018,30(5):1284-1294. (in Chinese with English abstract)
doi: 10.18307/2018.0511
[1] Shibei YOU,Jiahui XU,Yiwen GUO,Fanglei LIAO,Li YANG,Wenrong CHEN,Weidong GUO. Mechanism of root hair deficiency and growth-promoting effect of endophytic mycorrhizal fungi in blueberry[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(4): 417-427.
[2] Xinxia WANG,Jifeng WANG,Qiong HOU,Xiaojun WANG,Wuzhong NI. Effects of different fertilizing models on growth of single crop rice and nitrogen and phosphorus runoff losses[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 225-233.
[3] Ying LIANG,Yu SHI,Xin ZHAO,Longqiang BAI,Leiping HOU,Yi ZHANG. Effects of silicon on the growth and physiological properties of tomato seedlings under low phosphorus condition[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 151-160.
[4] Yan HUAI,Zhaoming CHEN,Gengmiao ZHANG,Mingbei JIANG,Jianfeng XU,Qiang WANG. Nitrogen reduction effect of side-deep placement of fertilizer on the rice production[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 217-224.
[5] Ang WANG,Danchao DAI,Xuzhou MA,Qun MOU,Yongqing YU,Weiqun Lü. Effects of rice-crab culture on nitrogen leaching in rice fields in the north of China.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(3): 332-342.
[6] Shuang HE,Fayong LI,Ziwen LIU,Zhirong WANG,Shanshan WU,Tianyu Zhang,Yucheng Cao,Xingqiang Liang. Retarding effect of migration of colloidal phosphorus in three types of soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 205-210.
[7] Mingkui ZHANG,Yucai YAO,Zhiteng QIU,Xiali MAO,Liangyu YANG. Pedogenetic characteristics and taxonomic classification of soils developed from carbonate rocks in the south of China[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 54-65.
[8] Xu WEN,Xuzhou MA,Wei FAN,Xingxing LI,Yingliang ZHONG. Structural characteristics of phytoplankton functional groups in the young crab pond with different reed type rice acreages[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(1): 85-94.
[9] JIANG Jingjing, CHANG Xiaoxiao, HU Xiaohui. Effects of nitrogen supply level on nutrient absorption, distribution and yield of cucumber grown in substrate bag culture system[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(6): 678-686.
[10] LIU Zhiheng, XU Kaiwei, WANG Ke, XIE Jin, WANG Jiarui, ZHAO Yani, CHEN Yuanxue. Effect of different nitrogen applications on maize yield and nutrient accumulation in different organs[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(5): 573-579.
[11] SUN Yefang, XING Hai, WU Weihong, WEN Xiujuan, GU Chao, YE Kun, GU Guoping. Control of heavy metal accumulations in soil-cabbage (Brassica chinensis L.) system of lead/zinc mine tailings using phosphorus fertilizer[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 787-796.
[12] FENG Jiayin, ZHU Min, HE Yan. Key microbial functional genes and their diversity involved in soil typical reduction processes: A review[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 663-675.
[13] TIAN Yue, Lü Tianxing, YANG Yuanzhao, HOU Xinxin, CHEN Huabao, ZHANG Min, GONG Guoshu, YANG Chunping. Effects of pedunsaponin on oxygen consumption rate and ammonia excretion rate of Pomacean canaliculata[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 608-614.
[14] YANG Guofeng, YU Youfang, SHENG Kuichuan. Effect of feeding rate on pollutant emission of biomass pellet burner[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(3): 389-396.
[15] BAI Yongjuan, XU Weinan, CHANG Xiaoxiao, HU Xiaohui. Effects of carbon-to-nitrogen ratios and nitrogen sources on composting of mushroom residue[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(6): 760-768.