Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2020, Vol. 46 Issue (3): 369-375    DOI: 10.3785/j.issn.1008-9209.2019.06.212
Animal sciences & veterinary medicine     
Morphological characteristics of chromium and transformation of hexavalent chromium in Mytilus coruscus
Yin ZHU1,2(),Jian ZHU1,2(),Zimeng LI1,2,Heng WANG1,2,Juju YOU1,2,Qin LIU1,2
1.Marine Fisheries Research Institute of Zhejiang, Zhoushan 316021, Zhejiang, China
2.Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhoushan 316021, Zhejiang, China
Download: HTML   HTML (   PDF(1132KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Taking Mytilus coruscus as the research object and using hexavalent chromium [Cr(Ⅵ)] standard substance as the poisoning reagent, the content of chromium (Cr) in M. coruscus with the same speciation was compared, and the speciation of Cr at different time nodes was monitored, and the transformation of Cr(Ⅵ) in M. coruscus was discussed. The results showed that the trivalent chromium [Cr(Ⅲ)] and organic Cr were confirmed as the two main states of Cr in M. coruscus by using Cr(Ⅵ) standard substance as the poisoning reagent, with percentages of 21.0%-29.9% for Cr(Ⅲ), and 70.1%-79.0% for organic Cr. Cr(Ⅵ) could not be stable in M. coruscus. In the exposure experiment,accumulation of Cr(Ⅵ) in M.coruscus in vivo was converted into Cr(Ⅲ) and organic Cr, resulting in the contents of total Cr, Cr(Ⅲ) and organic Cr increased significantly. With the increase of Cr content in M. coruscus, the conversion rate of total Cr, Cr(Ⅲ) and organic Cr decreased gradually, as well as the content growth rate. When the enrichment tended to equilibrium, the Cr content increased nearly stagnation, and the conversion rates of total Cr, Cr(Ⅲ) and organic Cr decreased significantly, and the proportion of organic Cr to Cr(Ⅲ) continued to increase.



Key wordsMytilus coruscus      chromium      morphological characteristics      transformation     
Received: 21 June 2019      Published: 17 July 2020
CLC:  S 912  
Corresponding Authors: Jian ZHU     E-mail: zhuyin2697@163.com;391352810@qq.com
Cite this article:

Yin ZHU,Jian ZHU,Zimeng LI,Heng WANG,Juju YOU,Qin LIU. Morphological characteristics of chromium and transformation of hexavalent chromium in Mytilus coruscus. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 369-375.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2019.06.212     OR     http://www.zjujournals.com/agr/Y2020/V46/I3/369


厚壳贻贝中铬的形态特征及六价铬的转化规律

以厚壳贻贝为研究对象,采用六价铬[Cr(Ⅵ)]标准物质为染毒试剂,比较同一形态Cr在厚壳贻贝体内的含量变化,并监测不同时间节点Cr的形态变化,探讨Cr(Ⅵ)在厚壳贻贝中的转化规律。结果表明:Cr在厚壳贻贝体内主要以三价铬[Cr(Ⅲ)]和有机Cr形态存在,其中Cr(Ⅲ)占21.0%~29.9%,有机Cr占70.1%~79.0%;Cr(Ⅵ)无法稳定存在于厚壳贻贝体内。暴露实验中,厚壳贻贝体内蓄积的Cr(Ⅵ)都被转化成Cr(Ⅲ)和有机Cr,使得厚壳贻贝体内的总Cr、Cr(Ⅲ)和有机Cr含量均显著提升;随着厚壳贻贝体内Cr含量的增加,总Cr、Cr(Ⅲ)和有机Cr的转化率逐渐降低,Cr含量增速也逐渐放缓。待厚壳贻贝中Cr趋于富集平衡状态时,Cr含量增长接近停滞,总Cr、 Cr(Ⅲ)和有机Cr的转化率大幅下降,其中,有机Cr部分转化为Cr(Ⅲ),使Cr(Ⅲ)比例持续升高。


关键词: 厚壳贻贝,  铬,  形态特征,  转化 
t/d

低剂量组

Low-dose group

高剂量组

High-dose group

ρ[Cr(Ⅵ)]/(μg/L)

Cr(Ⅵ)迁移量

Cr(Ⅵ)

migration

amount/μg

ρ[Cr(Ⅵ)]/(μg/L)

Cr(Ⅵ)迁移量

Cr(Ⅵ)

migration

amount/μg

049.23±0.21491.72±3.41
134.19±0.54300.8±6.6387.28±5.682 088.8±45.4
237.14±0.43241.8±4.4417.86±5.291 477.2±37.6
339.05±0.46203.6±5.0443.21±4.37970.2±19.2
443.08±0.35123.0±2.8458.84±4.52657.6±22.2
544.42±0.3496.2±2.6464.95±3.83535.4±8.4
647.83±0.2828.0±1.4476.42±4.05246.0±12.8
748.57±0.2413.2±0.6488.23±3.76109.8±7.0
Table 1 Contents and migration amounts of Cr(Ⅵ) in exposure solution
Fig. 1 Total amounts of Cr(Ⅵ) migration in single M. coruscus
Fig. 2 Change of total Cr content in M. coruscus
Fig. 3 Change of Cr(Ⅲ) content in M. coruscus
Fig. 4 Change of organic Cr content in M. coruscus
t/d低剂量组 Low-dose group高剂量组 High-dose group

总Cr

Total Cr

Cr(Ⅲ)

有机Cr

Organic Cr

总Cr

Total Cr

Cr(Ⅲ)

有机Cr

Organic Cr

152.612.140.561.813.048.8
246.611.535.155.314.241.1
348.510.937.655.413.941.5
444.610.833.850.314.136.2
540.110.429.745.713.532.2
639.510.628.943.312.830.5
739.210.828.441.812.529.3
Table 2 Morphological change and conversion rate of Cr in M. coruscus
Fig. 5 Ratio of Cr(Ⅲ) to total Cr in M. coruscus
[1]   HAMILTON E M, YOUNG S D, BAILEY E H, et al. Chromium speciation in foodstuffs: a review. Food Chemistry, 2018,250:105-112. DOI:10.1016/j.foodchem.2018.01.016
doi: 10.1016/j.foodchem.2018.01.016
[2]   DHAL B, DAS N N, THATOI H N, et al. Characterizing toxic Cr(Ⅵ) contamination in chromite mine overburden dump and its bacterial remediation. Journal of Hazardous Materials, 2013,260:141-149. DOI:10.1016/j.jhazmat.2013.04.050
doi: 10.1016/j.jhazmat.2013
[3]   ELLIS D I, BREWSTER V L, DUNN W B, et al. Fingerprinting food: current technologies for the detection of food adulteration and contamination. Chemical Society Reviews, 2012,41(17):5706-5727. DOI:10.1039/c2cs35138b
doi: 10.1039/c2cs35138b
[4]   GóMEZ V, CALLAO M P. Chromium determination and speciation since 2000. Trends in Analytical Chemistry, 2006,25(10):1006-1015. DOI:10.1016/j.trac.2006.06.010
doi: 10.1016/j.trac.2006.06.010
[5]   李静萍,杜亚利.铬对人体的作用.甘肃科技,2003,19(12):118-119.
LI J P, DU Y L. Effect of chromium on human body. Gansu Science and Technology, 2003,19(12):118-119. (in Chinese)
[6]   刘鹭,李函彤,张书文,等.生物富铬与人体营养健康.生物产业技术,2018(1):102-106. DOI:10.3969/j.issn.1674-0319.2018.01.014
LIU L, LI H T, ZHANG S W, et al. Chromium enrichment and human nutrition. Biotechnology & Business, 2018(1):102-106. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-0319.2018.01.014
[7]   JOBBY R, JHA P, YADAV A K, et al. Biosorption and biotransformation of hexavalent chromium [Cr(Ⅵ)]: a comprehensive review. Chemosphere, 2018,207:255-266. DOI:10.1016/j.chemosphere.2018.05.050
doi: 10.1016/j.chemosphere.2018.05.050
[8]   JOHN B V. Recent advances in the nutritional biochemistry of trivalent chromium. Proceedings of the Nutrition Society, 2004,63(1):41-47. DOI:10.1079/PNS2003315
doi: 10.1079/PNS2003315
[9]   SCHWARZ K, MERTZ W. Chromium (Ⅲ) and the glucose tolerance factor. Archives of Biochemistry and Biophysics, 1959,85:292-295.
[10]   常抗美,吴剑锋.厚壳贻贝人工繁殖技术的研究.南方水产,2007,3(3):26-30.
CHANG K M, WU J F. Study on artificial propagation of mussel Mytilus coruscus. South China Fisheries Science, 2007,3(3):26-30. (in Chinese with English abstract)
[11]   RAINBOW P S. Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 2002,120(3):497-507.
[12]   XU M Y, JIANG L H, SHEN K N, et al. Transcriptome response to copper heavy metal stress in hard-shelled mussel (Mytilus coruscus). Genomics Data, 2016,7(3):152-154. DOI:10.1016/j.gdata.2015.12.010
doi: 10.1016/j.gdata.2015.12.010
[13]   励建荣,李学鹏,王丽,等.贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1):51-55.
LI J R, LI X P, WANG L, et al. Advances in uptake, transportation and bioaccumulation of heavy metal ions in bivalves. Fisheries Science, 2007,26(1):51-55. (in Chinese with English abstract)
[14]   全国海洋标准化技术委员会.海洋监测规范 第4部分:海水分析:GB 17378.4—2007.北京:中国标准出版社,2007.
National Marine Standardization Technical Committees. The Specification for Marine Monitoring. Part 4: Seawater Analysis: GB17378.4—2007. Beijing: Standards Press of China, 2007. (in Chinese)
[15]   ROIG-NAVARRO A F, MARTINEZ-BRAVO Y, LóPEZ F J, et al. Simultaneous determination of arsenic species and chromium(Ⅵ) by high-performance liquid chromatography-inductively coupled plasma-mass spectrometry. Journal of Chromatography A, 2001,912(2):319-327. DOI:10.1016/S0021-9673(01)00572-6
doi: 10.1016/S0021-9673(01)00572-6
[16]   生态环境部.海水水质标准:GB 3097—1997.北京:中国标准出版社,1997.
Ministry of Ecology and Environment. Sea Water Quality Standard: GB 3097—1997. Beijing: Standards Press of China, 1997. (in Chinese)
[17]   王昊盛,宋鑫金,董文强,等.厚壳贻贝(Mytilus coruscus)金属硫蛋白MT-10:cDNA克隆、结构分析及铜离子胁迫下的表达.海洋与湖沼,2017,48(4):864-869. DOI:10.11693/hyhz20170300056
WANG H S, SONG X J, DONG W Q, et al. The cDNA cloning and characterization of Mytilus coruscus metallothionein 10 as well as its mRNA expression under the Cu2+ stress. Oceanologia et Limnologia Sinica, 2017,48(4):864-869. (in Chinese with English abstract)
doi: 10.11693/hyhz20170300056
[18]   谷善勇,骆骄阳,刘好,等.铬元素及其形态分析研究进展.中国中药杂志,2018,43(23):4622-4631. DOI:10.19540/j.cnki.cjcmm.20180927.001
GU S Y, LUO J Y, LIU H, et al. Research progress of chromium and its speciation analysis. China Journal of Chinese Materia Medica, 2018,43(23):4622-4631. (in Chinese with English abstract)
doi: 10.19540/j.cnki.cjcmm.20180927.001
[19]   王校常,孙锦荷,张勤争,等.铬的水生生物学效应研究进展.核农学通报,1995(4):190-193.
WANG J C, SUN J H, ZHANG Q Z, et al. Advances in aquatic biological effects of chromium. Nuclear Agronomy Bulletin, 1995(4):190-193. (in Chinese with English abstract)
[20]   REVATHI K, HARIBABU T E, SUDHA P N. Pytoreme-diation of chromium contaminated soil using sorghum plant. International Journal of Environmental Sciences, 2011,2(2):417-428. DOI:10.6088/ijes.00202020005
doi: 10.6088/ijes.00202020005
[1] Tianjiao ZHOU,Xiaohui DING,Junhui WANG. Strategies for modulation and optimization of the photorespiration pathway in plants[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(3): 271-279.
[2] YU Xinjie, WU Xiongfei, SHEN Weiliang. Pattern recognition method for the identification of Daiqu large yellow croaker based on computer vision#br#[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(4): 490-498.
[3] TONG Xin,HU Boyang,CHEN Xingcai,ZHANG Xuelian,ZHAO Yongzhi,GU Chenggang,LI Yanxia. Environmental exposure of steroid estrogens and their migration and transformation behavior[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(6): 734-746.
[4] HE Shuilian, WU Jingzhi, LU Yan, XU Chunmei, WU Hongzhi. Growth of tetraploid Zantedeschia hybrida and its physiological response to low temperature[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2017, 43(5): 570-578.
[5] Li Lei, Shen Xinqiang, Li Chao, Wang Yunlong, Jiang Mei, Wu Qingyuan, Niu Junxiang, Xu Gaopeng. Bioaccumulation kinetics of hexavalent chromium in the tissues of Exopalaemon carinicauda and Portunus trituberculatus[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(4): 476-482.
[6] WANG Anke, HE Qiuling, PAN Jingjing, SUN Yingchao, ZHU Shuijin, CHEN Jinhong*. Improved Agrobacteriummediated transformation protocol for VgDGAT1a  gene based on shoot tip culture of cotton[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2013, 39(3): 253-260.
[7] MA Lin1, ZHOU Lian1, ZHOU Zheng-jian1, TANG Gui-xiang2, SHEN Zhi-cheng2, SHOU Hui-xia1*. Establishment of methods for identifying rapidly and precisely transgenic rice and soybean containing herbicide-resistant gene bar and EPSPS[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(6): 647-654.
[8] YAN Jing, ZHOU Zufa, YUAN Weidong, WANG Weike, LU Na, SONG Jiling. Studies on fungus dregs cultivating  Tricholoma lobayense Heim[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(4): 485-489.
[9] CHEN Yan, SUN Kuanying, ZHANG Tao. Transformation of Lagerstroemia indica by improved Agrobacteriummediated floral-dip and pollen-tube pathway method.[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2012, 38(3): 250-255.
[10] ZHANG Rui‐qin,GUAN Bin,KONG Qing,YOU Yong,WU Ji‐qin,WEI Qun. Study on astaxanthin accumulation by heterotrophic transformation in Haematococcus pluvialis[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(6): 624-630.
[11] ZHANG Jing,DENG Shi‐huai, GUO Hang, SHEN Fei, GU Wei‐gang, LI Yuan‐wei. Application of cluster analysis in morphological characteristics of neurons[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2011, 37(5): 493-500.
[12] GE Lin-Quan, ZHOU Guo-Xin, WANG Qi, ZHU Shu-De, LOU Yong-Gen. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 365-371.
[13] ZHANG Hao-Fu, ZHANG Xian-Yin. [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2009, 35(4): 372-376.