Please wait a minute...
Journal of Zhejiang University (Agriculture and Life Sciences)  2019, Vol. 45 Issue (2): 196-204    DOI: 10.3785/j.issn.1008-9209.2018.04.161
Food sciences     
Effects of ultrasonic-assisted hot water extraction on the yield and structure of water soluble polysaccharides from Dendrobium officinale
Rong JIN1,2(),Wenhua XIE1,Jiebiao CHEN1,Nianchen WANG1,Baixue XIANG1,Yue WANG1,Jinping CAO1()
1. Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement of the Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China
2. Agricultural Experimental Station, Zhejiang University, Hangzhou 310058, China
Download: HTML   HTML (   PDF(974KB)
Export: BibTeX | EndNote (RIS)      

Abstract  

Dendrobium officinale is an edible medicinal plant with polysaccharides as its important bioactive components. This study investigated the effects of ultrasonic-assisted extraction on the yield of D. officinale ‘Shenglan No. 8’ water soluble polysaccharides as well as the influence to the molecular structure. The results showed that ultrasonic-assisted methods significantly increased the yield of polysaccharides and shortened the extraction time from 2 h to 3 min. The highest extraction efficiency was obtained in the ultrasonic-assisted hot water synergetic extraction (500 W, 95-100 ℃, 3 min). The results of gel permeation chromatography (GPC) showed that the D. officinale polysaccharides through ultrasonic-assisted extraction were with higher polydispersity (PDI). The water soluble polysaccharides from D. officinale ‘Shenglan No. 8’ were composed of mannose, glucose, galactose, arabinose, rhamnose, xylose, glucuronic acid and galacturonic acid. No significant difference was observed on the infrared spectrum and monosaccharide composition among the different extraction methods. The D. officinale polysaccharides had certain congo red-binding ability, which was not affected by the ultrasonic treatments. The optimum extract parameters (500 W, 95-100 ℃, 3 min) was applied in the comparison of polysaccharide content among 13 cultivars. The polysaccharide content varied among the cultivars and tissues, with a range of 69.40-130.10 g/kg fresh mass in the stem, and a range of 15.30-34.10 g/kg fresh mass in the leaf.



Key wordsDendrobium officinale      cultivars      polysaccharides      ultrasonic-assisted extraction     
Received: 16 April 2018      Published: 25 April 2019
CLC:  O 629.12  
Corresponding Authors: Jinping CAO     E-mail: rong@zju.edu.cn;0017165@zju.edu.cn
Cite this article:

Rong JIN,Wenhua XIE,Jiebiao CHEN,Nianchen WANG,Baixue XIANG,Yue WANG,Jinping CAO. Effects of ultrasonic-assisted hot water extraction on the yield and structure of water soluble polysaccharides from Dendrobium officinale. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 196-204.

URL:

http://www.zjujournals.com/agr/10.3785/j.issn.1008-9209.2018.04.161     OR     http://www.zjujournals.com/agr/Y2019/V45/I2/196


超声辅助热水提取对铁皮石斛水溶性多糖得率和结构的影响

为建立铁皮石斛水溶性多糖超声辅助热水提取法,本文比较了常温和热水提取体系中超声辅助提取对‘圣兰8号’铁皮石斛(Dendrobium officinale)水溶性多糖得率及其分子结构的影响。结果表明:超声辅助提取显著提高了铁皮石斛水溶性多糖得率,并使提取时间从2 h缩短至3 min;超声辅助-热水提取(95~100 ℃)可进一步提高得率,其中500 W超声3 min的效果最佳。凝胶渗透色谱结果显示,超声辅助提取的多糖多分散度显著增高。‘圣兰8号’铁皮石斛水溶性多糖由甘露糖、葡萄糖、半乳糖、阿拉伯糖、鼠李糖、木糖、葡萄糖醛酸和半乳糖醛酸组成,提取方法对多糖红外光谱和单糖组成无明显影响。铁皮石斛水溶性多糖具有刚果红结合能力,超声辅助提取不改变其与刚果红的结合特性。将500 W超声辅助-热水提取方法应用于13个铁皮石斛品种水溶性多糖的提取,发现茎中水溶性多糖质量分数在69.40~130.10 g/kg之间(按鲜质量计),叶片中则在15.30~34.10 g/kg之间(按鲜质量计),品种间存在较大差异。


关键词: 铁皮石斛,  品种,  多糖,  超声辅助提取 

组号

Group No.

提取参数

Extract parameters

水溶性组分Water-soluble fraction (WSF)

得率1)

Yield 1)/(g/kg)

多糖

Polysaccharides/%

蛋白

Protein/%

酚类

Phenolics/%

A 14 ℃,2 h 67.40±1.41c 93.58±2.23a 3.09±0.18a <0.010
B 20 ℃,100 W,3 min 88.40±1.12b 92.87±3.44a 3.06±0.35a <0.010
C 20 ℃,300 W,3 min 88.90±0.19b 92.45±3.27a 3.18±0.20a <0.010
D 20 ℃,500 W,3 min 78.30±0.15bc 89.07±5.62a 2.97±0.65a <0.010
E 100 ℃,2 h 121.90±0.36a 90.32±7.95a 1.29±0.22c <0.010
F 95~100 ℃,100 W,3 min 92.00±0.80b 90.13±5.15a 2.51±0.25b 0.011
G 95~100 ℃,300 W,3 min 88.40±1.26b 86.48±8.03a 3.02±0.47a <0.010
H 95~100 ℃,500 W,3 min 116.60±0.38a 88.97±7.97a 2.76±0.34ab <0.010
Table 1 Yield and purity of water soluble polysaccharides from Dendrobium officinale ‘Shenglan No. 8’ under different extract parameters
Fig. 1 GPC spectrum of water soluble polysaccharides from D. officinale ‘Shenglan No. 8’ under different extract parameters

提取参数

Extract parameters

保留时间

Retention time/min

重均相对摩尔质量Mw/(105 g/mol)

数均相对摩尔质量

Mn/(105 g/mol)

多分散度

Polydispersity (PDI)

14 ℃,2 h 13.43±0.50a 2.95±0.05c 0.62±0.00bcd 4.74±0.04d
20 ℃,100 W,3 min 12.76±1.12a 3.28±0.02b 0.67±0.02ab 4.93±0.15d
20 ℃,300 W,3 min 12.79±1.01a 3.31±0.10b 0.69±0.04a 4.80±0.14d
20 ℃,500 W,3 min 13.87±1.60a 3.68±0.20a 0.56±0.07de 6.60±0.48b
100 ℃,2 h 13.59±1.33a 3.13±0.05b 0.63±0.02abc 4.97±0.20d
95~100 ℃,100 W,3 min 13.89±1.11a 3.68±0.11a 0.58±0.04cd 6.32±0.30bc
95~100 ℃,300 W,3 min 13.59±1.60a 3.82±0.04a 0.63±0.00abc 6.04±0.04c
95~100 ℃,500 W,3 min 14.54±0.16a 3.70±0.09a 0.52±0.02e 7.14±0.31a
Table 2 Molecular size of water soluble polysaccharides from D. officinale ‘Shenglan No. 8’ under different extract parameters
Fig. 2 Congo red binding capacity of water soluble polysaccharides from D. officinale ‘Shenglan No. 8’ under different extract parameters
Fig. 3 Infrared spectrum of water soluble polysaccharides from D. officinale ‘Shenglan No. 8’ under different extract parameters
Fig. 4 HPLC spectrum of monosaccharides from D. officinale ‘Shenglan No. 8’ water soluble polysaccharides

提取参数

Extract parameters

甘露糖

Mannose

葡萄糖

Glucose

鼠李糖

Rhamnose

半乳糖

Galactose

木糖

Xylose

阿拉伯糖

Arabinose

半乳糖醛酸

Galacturonic

acid

葡萄糖醛酸

Glucuronic

acid

甘露糖/葡萄糖

Mannose/

glucose

14 ℃,2 h 79.17±4.29a 16.33±1.89ab

0.45±

0.12a

0.90±0.25b 1.21±0.27a 0.86±0.31a 1.85±0.35a 痕量Trace 4.90±0.83ab

20 ℃,100 W,

3 min

75.58±0.77b 21.02±0.53a

0.20±

0.09bc

0.35±0.01d 1.14±0.06a 0.35±0.05a 0.46±0.20b 痕量Trace 3.60±0.13b

20 ℃,300 W,

3 min

76.63±1.80ab 18.81±2.30ab

0.15±

0.01c

0.69±0.02c 1.05±0.03ab 0.42±0.09a 1.08±0.25ab 痕量Trace 4.11±0.60ab

20 ℃,500 W,

3 min

77.69±0.58ab 17.82±0.67ab

0.27±

0.05abc

0.95±0.01b 0.96±0.11abc 0.48±0.03a 0.66±0.19ab 痕量Trace 4.36±0.20ab
100 ℃,2 h 77.39±1.47ab 17.82±1.31ab

0.34±

0.05ab

0.85±0.10bc 0.64±0.05d 0.72±0.06a 1.01±0.18ab 痕量Trace 4.36±0.40ab

95~100 ℃,

100 W,3 min

78.95±1.80ab 15.76±2.17b

0.34±

0.08ab

1.23±0.01a 0.74±0.08cd 0.56±0.03a 1.07±0.25ab 痕量Trace 5.06±0.81a

95~100 ℃,

300 W,3 min

79.48±1.72a 16.40±1.82b

0.28±

0.05abc

0.84±0.17bc 0.72±0.05cd 0.43±0.12a 0.79±0.07ab 痕量Trace 4.88±0.65ab

95~100 ℃,

500 W,3 min

78.58±0.30ab 17.39±1.34ab

0.20±

0.00bc

0.73±0.01c 0.83±0.25bcd 0.45±0.30a 0.77±0.24ab 痕量Trace 4.53±0.37ab
Table 3 Monosaccharide composition of water soluble polysaccharides from D. officinale ‘Shenglan No. 8’ under different extract parameters%
Fig. 5 Polysaccharide contents of stems (A) and leaves (B) from different D. officinale cultivars
[1]   TANG H X , ZHAO T W , SHENG Y J , et al . Dendrobium officinale Kimura et Migo: a review on its ethnopharmacology, phytochemistry, pharmacology, and industrialization. Evidence-Based Complementary and Alternative Medicine, 2017,2017:7436259.
[2]   XING X H , CUI S W , NIE S P , et al . Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan?): Part I. Extraction, purification, and partial structural characterization. Bioactive Carbohydrates and Dietary Fibre, 2014,4(1):74-83.
[3]   周桂芬,庞敏霞,陈素红,等 .铁皮石斛茎、叶多糖含量及多糖部位柱前衍生化-高效液相色谱指纹图谱比较研究.中国中药杂志,2014,39(5):795-802.
ZHOU G F , PANG M X , CHEN S H , et al . Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale . China Journal of Chinese Meteria Medica, 2014,39(5):795-802. (in Chinese with English abstract)
[4]   HUANG X J , NIE S P , CAI H L , et al . Study on Dendrobium officinale O-acetyl-glucomannan (Dendronan (R)): Part VI. Protective effects against oxidative stress in immunosuppressed mice. Food Research International, 2015,72:168-173.
[5]   ZHAO Y , LIU Y , LAN X M , et al . Effect of Dendrobium officinale extraction on gastric carcinogenesis in rats. Evidence-based Complementary and Alternative Medicine, 2016,2016(9):1213090.
[6]   WEI W , LI Z P , ZHU T , et al . Anti-fatigue effects of the unique polysaccharide marker of Dendrobium officinale on BALB/c mice. molecules, 2017,22(1):155.
[7]   WEI W , FENG L , BAO W R , et al . Structure characterization and immunomodulating effects of polysaccharides isolated from Dendrobium officinale . Journal of Agricultural and Food Chemistry, 2016,82(S01):881-889.
[8]   XIE S Z , LIU B , ZHANG D D , et al . Intestinal immunomodulating activity and structural characterization of a new polysaccharide from stems of Dendrobium officinale . Food & Function, 2016,7(6):2789-2799.
[9]   国家药典委员会 .中华人民共和国药典.2015年版一部.北京:化学工业出版社,2015:282-283.
National Pharmacopoeia Committee . Pharmacopoeia of the Peoples Republic of China . 2015, Part 1. Beijing: Chemical Industry Press, 2015:282-283. (in Chinese)
[10]   张晓敏,孙志蓉,朱南南,等 .纤维素酶提取金钗石斛多糖工艺研究.中医药信息,2015,33(2):50-53.
ZHANG X M , SUN Z R , ZHU N N , et al . Cellulase extraction technology of polysaccharide from Dendrobium nobile . Information on Traditional Chinese Medicine, 2015,32(2):50-53. (in Chinese with English abstract)
[11]   叶余原 .超声法提取铁皮石斛多糖工艺的研究.中药材,2009,32(4):617-620.
YE Y Y . Ultrasonic extraction research on polysaccharides of Dendrobium officinale . Journal of Chinese Medicinal Materials, 2009,32(4):617-620. (in Chinese with English abstract)
[12]   陈盛余,赵丹丹,谢瑜,等 .铁皮石斛多糖的微波辅助提取工艺研究.食品研究与开发,2017,38(6):49-52.
CHEN S Y , ZHAO D D , XIE Y , et al . Study on the technology of extracting polysaccharides from dried stems of Dendrobium officinale Kimuraet Migo by microwave method. Food Research and Development, 2017,38(6):49-52. (in Chinese with English abstract)
[13]   邓维泽,古霞,闫天龙,等 .微波辅助提取金钗石斛多糖及体外抗氧化研究.食品研究与开发,2016,37(9):55-59.
DENG W Z , GU X , YAN T L , et al . Microwave-assisted extraction and in vitro antioxidant activity evaluation of polysaccharides from Dendrobium nobile Lindl. Food Research and Development, 2016,37(9):55-59. (in Chinese with English abstract)
[14]   CHEN W , WANG W P , ZHANG H S , et al . Optimization of ultrasonic-assisted extraction of water-soluble polysaccha-rides from Boletus edulis mycelia using response surface methodology. Carbohydrate Polymers, 2012,87(1):614-619.
[15]   NIE C Z P , ZHU P L , WANG M C , et al . Optimization of water-soluble polysaccharides from stem lettuce by response surface methodology and study on its characterization and bioactivities. International Journal of Biological Macro-molecules, 2017,105(Pt. 1):912-923.
[16]   RAZA A , LI F , XU X Q , et al . Optimization of ultrasonic-assisted extraction of antioxidant polysaccharides from the stem of Trapa quadrispinosa using response surface methodology. International Journal of Biological Macro-molecules, 2017,94(Pt A):335-344.
[17]   LIAO N B , ZHONG J J , YE X Q , et al . Ultrasonic-assisted enzymatic extraction of polysaccharide from Corbicula fluminea: characterization and antioxidant activity. LWT-Food Science and Technology, 2015,60(2):1113-1121.
[18]   ZENG H L , ZHANG Y , LIN S , et al . Ultrasonic-microwave synergistic extraction (UMSE) and molecular weight distribution of polysaccharides from Fortunella margarita (Lour.) Swingle. Separation and Purification Technology, 2015,144:97-106.
[19]   ZHU W L , XUE X P , ZHANG Z J . Ultrasonic-assisted extraction, structure and antitumor activity of polysaccharide from Polygonum multiflorum . International Journal of Biological Macromolecules, 2016,91:132-142.
[20]   LI J , LI B , GENG P , et al . Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (Konjac glucomannan) in water. Food Hydrocolloids, 2017,70:14-19.
[21]   YAN J K , WANG Y Y , MA H L, et al . Ultrasonic effects on the degradation kinetics, preliminary characterization and antioxidant activities of polysaccharides from Phellinus linteus mycelia. Ultrasonics Sonochemistry, 2016,29(23):251-257.
[22]   TANG W , LIN L H , XIE J H , et al . Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus . Carbohydrate Polymers, 2016,151:305-312.
[23]   YU X J , ZHOU C S , YANG H , et al . Effect of ultrasonic treatment on the degradation and inhibition cancer cell lines of polysaccharides from Porphyra yezoensis . Carbohydrate Polymers, 2015,117:650-656.
[24]   YAO Y , ZHU Y Y , GAO Y , et al . Effect of ultrasonic treatment on immunological activities of polysaccharides from adlay. International Journal of Biological Macro-molecules, 2015,80:246-252.
[25]   DUBOIS M , GILLES K A , HAMILTON J K , et al . Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956,28(3):350-356.
[26]   SINGLETON V L , ROSSI J A . Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 1965,16:144-158.
[27]   SUN H H , MAO W J , CHEN Y , et al . Isolation, chemical characteristics and antioxidant properties of the poly-saccharides from marine fungus Penicillium sp. F23-2. Carbohydrate Polymers, 2009,78(1):117-124.
[28]   王琳炜,欧阳臻,张碧娟,等 .霍山铁皮石斛多糖的脱蛋白工艺及结构分析.食品科学,2017,38(12):164-170.
WANG L W , OUYANG Z , ZHANG B J , et al . Deproteinization and structural analysis of polysaccharides from Dendrobium officinale Kimura et Migo grown in Huoshan. Food Science, 2017,38(12):164-170. (in Chinese with English abstract)
[29]   HE T B , HUANG Y P , YANG L , et al . Structural characterization and immunomodulating activity of polysaccharide from Dendrobium officinale . International Journal of Biological Macromolecules, 2016,83:34-41.
[30]   LUO Q L , TANG Z H , ZHANG X F , et al . Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale . International Journal of Biological Macromolecules, 2016,89:219-227.
[31]   鲁芹飞,王培培,陈建南,等 .广东铁皮石斛GAP基地的石斛鲜品茎和叶中多糖的含量比较研究.医学研究杂志,2013,42(9):55-58.
LU Q F , WANG P P , CHEN J N , et al . Comparative study on polysaccharides content in stem and leaf of iron stone dendrobium fresh product from different producing place. Journal of Medical Research, 2013,42(9):55-58. (in Chinese with English abstract)
[1] Changchun GUO,Qiao ZHANG,Yongjian SUN,Yunxia WU,Hui XU,Yan HE,Zhiyuan YANG,Peng MA,Zhiyun PENG,Jun MA. Comparison of stem lodging resistance characteristics and differences of indica hybrid rice cultivars with different yield levels in precision direct seeding[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(2): 143-156.
[2] YANG Hui, KE Leqin, SHU Ruonan, CHEN Yuwei, ZHU Tingyu, WANG Jun, FAN Jintao, WANG Liangliang. Effects of different storage time on polysaccharide content and antioxidant activity of edible fungi[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2018, 44(3): 356-364.
[3] YU En, CAI Yunfei, ZHAO Rubing, CHEN Jinhong, ZHU Shuijin. Studies on temporal-spatial expression characters of Bt protein in two transgenic hybrid cotton[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2016, 42(1): 17-22.
[4] YE Ming,CHEN Wu-xi,PENG Wei,MA Jian,YANG Liu. Effects of batch and fed-batch cultures on biomass and exopolysaccharide production of Lachnum calyculiforme[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2010, 36(6): 630-634.