Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (6): 853-862    DOI: 10.3785/j.issn.1008-9209.2022.07.273
资源利用与环境保护     
强酸性轻度镉污染稻田安全利用技术模式探究
陈思民1(),卢新哲2,黄春雷2,施加春1(),徐建明1
1.浙江大学环境与资源学院土水资源与环境研究所,浙江 杭州 310058
2.浙江省地质调查院,浙江 杭州 311203
Study on safe utilization technology model of high acidity and mild cadmium-contaminated paddy fields: a case of the cadmium-contaminated pilot area in Yongkang City of Zhejiang Province
Simin CHEN1(),Xinzhe LU2,Chunlei HUANG2,Jiachun SHI1(),Jianming XU1
1.Institute of Soil-Water Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Zhejiang Institute of Geological Survey, Hangzhou 311203, Zhejiang, China
 全文: PDF(1863 KB)   HTML
摘要:

为探究适合强酸性镉(Cd)污染稻田土壤的安全利用技术模式,在浙江省永康市Cd污染试验区,连续2年开展田间Cd低累积水稻品种和土壤钝化材料筛选及其组合效果试验。结果表明:在品种筛选试验中,‘秀水519’(XS519)、‘浙糯106’(ZN106)、‘中浙优1号’(ZZY1H)和‘中嘉8号’(ZJ8H)可被推荐为当地适宜种植的低Cd累积水稻品种,其中‘秀水519’的Cd累积能力较低且稳定,2年的平均富集系数分别为0.090和0.159。在钝化材料筛选试验中,石灰对土壤pH值的提高效果显著,石灰、铁基生物质炭和钙镁磷肥能在一定程度上降低土壤有效态Cd含量(钝化率分别为14.8%、7.1%和6.9%),1 800 kg/hm2铁基生物质炭和2 400 kg/hm2土壤调理剂对‘中嘉8号’籽粒的降Cd效果较好,施用后籽粒含Cd量分别降低了32.2%和29.0%。在Cd低累积品种和钝化材料的组合试验中,施用2 250 kg/hm2铁基生物质炭和2 250 kg/hm2土壤调理剂均使水稻分蘖期和灌浆期的土壤pH值明显上升,其中土壤调理剂对酸性土壤的改良效果明显优于铁基生物质炭。‘秀水519’和‘浙糯106’的籽粒Cd含量与成熟期土壤pH值(5.19~5.61)呈极显著正相关,在试验所涉及的土壤pH值范围内,除‘秀水519’与1 500 kg/hm2土壤调理剂组合外,籽粒Cd含量随钝化材料施用量的升高而增加。从经济和轻简化角度考虑,种植‘秀水519’是目前该试验区Cd污染稻田安全利用的最佳选择。

关键词: 轻度镉污染强酸性稻田土壤安全利用    
Abstract:

In the highly acidic soil pilot area contaminated by cadmium (Cd) in Yongkang City of Zhejiang Province, we screened low-Cd-accumulating rice cultivars and soil passivators in the field and performed the combined effect tests for two consecutive years to explore the safe utilization technology model suitable for local Cd-polluted paddy fields. The results showed that ‘Xiushui 519’ (XS519), ‘Zhenuo 106’ (ZN106), ‘Zhongzheyou 1’ (ZZY1H) and ‘Zhongjia 8’ (ZJ8H) could be recommended as low-Cd-accumulating rice cultivars suitable for local planting. Among them, ‘Xiushui 519’ had the lowest and most stable Cd accumulation ability, and the average bioconcentration factors (BCFs) of Cd in the rice grains in the two years were 0.090 and 0.159, respectively; in the screening tests of passivators, the improvement effect of lime (L) on soil pH was significant. Lime, iron-modified biochar (FeC) and calcium-magnesia phosphate fertilizer (CaMgP) could reduce soil available Cd contents to a certain extent (passivation rates were 14.8%, 7.1% and 6.9%, respectively). In addition, 1 800 kg/hm2 iron-modified biochar and 2 400 kg/hm2 soil conditioner had better effects on reducing the Cd content in the rice grains of ‘Zhongjia 8’, which decreased by 32.2% and 29.0%, respectively, after application. According to the results of the combination tests of the low-Cd-accumulating cultivars and passivators, both the application of 2 250 kg/hm2 iron-modified biochar and 2 250 kg/hm2 soil conditioner increased obviously the soil pH values at the tillering stage and filling stage, the soil conditioner of which had a better improvement effect. The Cd contents in the rice grains of ‘Xiushui 519’ and ‘Zhenuo 106’ were extremely significant correlations with the soil pH values (5.19-5.61) at the mature stage. Within the range of soil pH values involved in the test, except for the combination of ‘Xiushui 519’ and the 1 500 kg/hm2 soil conditioner, the Cd content in the rice grains increased with increasing application amount of passivators. Therefore, planting ‘Xiushui 519’ (a low-Cd cultivar) directly is the best choice for the safe utilization of Cd-contaminated paddy fields in this area, which is both economical and convenient.

Key words: mild    cadmium pollution    high acidity    paddy soil    safe utilization
收稿日期: 2022-07-27 出版日期: 2023-12-25
CLC:  S511  
基金资助: 国家自然科学基金项目(42177007);浙江省自然科学基金项目(LGN22D010004);浙江省自然资源厅科技项目(2020006)
通讯作者: 施加春     E-mail: chensimin@zju.edu.cn;jcshi@zju.edu.cn
作者简介: 陈思民(https://orcid.org/0000-0001-7084-168X),E-mail:chensimin@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈思民
卢新哲
黄春雷
施加春
徐建明

引用本文:

陈思民,卢新哲,黄春雷,施加春,徐建明. 强酸性轻度镉污染稻田安全利用技术模式探究[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 853-862.

Simin CHEN,Xinzhe LU,Chunlei HUANG,Jiachun SHI,Jianming XU. Study on safe utilization technology model of high acidity and mild cadmium-contaminated paddy fields: a case of the cadmium-contaminated pilot area in Yongkang City of Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 853-862.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.07.273        https://www.zjujournals.com/agr/CN/Y2023/V49/I6/853

指标 Index石灰 L海泡石 Sep钙镁磷肥 CaMgP铁基生物质炭 FeC土壤调理剂 SC有机肥 OF猪粪生物质炭 PBC
pH值 pH value12.358.528.3012.1912.468.3210.40
w(Cd)/(mg/kg)0.020.050.370.270.150.650.09
表1  钝化材料的pH值和Cd含量
图1  不同品种水稻籽粒中Cd含量与富集系数短栅上不同小写字母表示在P<0.05水平差异有统计学意义,n=3。图3同。
图2  不同处理下试验前与水稻成熟期土壤pH值和有效态Cd含量短栅上不同小写字母表示同一时期各处理间在P<0.05水平差异有统计学意义,n=3。
图3  不同处理下ZJ8H水稻籽粒中Cd含量与富集系数

钝化材料

Passivator

单价

Unit price/

(Chinese Yuan/t)

施用量

Application

amount/(kg/hm2)

施用成本

Application

cost/(Chinese

Yuan/hm2)

PBC2 0002 0004 000
Sep3 5001 0003 500
FeC1 8001 8003 240
OF5303 6001 908
SC2 0002 4004 800
L3 1201 8005 616
CaMgP2 7001 2003 240
表2  钝化材料的单价与施用成本

处理

Treatment

试验前

Before the test

分蘖期

Tillering stage

灌浆期

Filling stage

成熟期

Mature stage

CK4.92±0.24a4.85±0.22c4.86±0.14c5.19±0.06b
FeC14.85±0.17a5.19±0.20ab4.99±0.05abc5.25±0.09b
FeC24.85±0.20a5.16±0.10abc4.95±0.13bc5.32±0.06b
FeC34.89±0.24a5.35±0.16a5.15±0.18ab5.39±0.13b
SC14.78±0.13a5.00±0.13bc4.94±0.13bc5.37±0.13b
SC24.80±0.02a5.01±0.26bc4.97±0.18abc5.31±0.11b
SC34.87±0.17a5.42±0.14a5.23±0.17a5.61±0.17a
表3  不同处理下不同时期土壤pH值

处理

Treatment

试验前

Before the test

分蘖期

Tillering stage

灌浆期

Filling stage

成熟期

Mature stage

CK0.205±0.027a0.305±0.014a0.260±0.028a0.191±0.017a
FeC10.194±0.049a0.237±0.016bc0.230±0.022a0.182±0.011ab
FeC20.186±0.044a0.239±0.037bc0.211±0.050a0.183±0.030ab
FeC30.180±0.050a0.201±0.017c0.222±0.024a0.150±0.008b
SC10.176±0.043a0.241±0.030bc0.248±0.058a0.180±0.020ab
SC20.155±0.021a0.236±0.012bc0.213±0.034a0.174±0.009ab
SC30.212±0.043a0.246±0.019b0.276±0.012a0.185±0.019a
表4  不同处理下不同时期土壤有效态Cd含量 (mg/kg)
图4  不同处理下水稻籽粒中Cd含量与富集系数短栅上不同小写字母表示同一品种各处理间在P<0.05水平差异有统计学意义,n=3。

指标

Index

土壤pH值

Soil pH value

土壤有效态Cd含量

Soil available Cd content

XS519籽粒Cd含量

Grain-Cd content of XS519

ZN106籽粒Cd含量

Grain-Cd content of ZN106

土壤pH值 Soil pH value1.0000.1640.789**0.573**

土壤有效态Cd含量

Soil available Cd content

1.0000.0100.057

XS519籽粒Cd含量

Grain-Cd content of XS519

1.000

ZN106籽粒Cd含量

Grain-Cd content of ZN106

1.000
表5  成熟期土壤理化指标与水稻籽粒Cd含量的皮尔逊相关性分析
1 赵凌,赵春芳,周丽慧,等.中国水稻生产现状与发展趋势[J].江苏农业科学,2015,43(10):105-107. DOI:10.15889/j.issn.1002-1302.2015.10.032
ZHAO L, ZHAO C F, ZHOU L H, et al. Current situation and development trend of rice production in China[J]. Jiangsu Agricultural Sciences, 2015, 43(10): 105-107. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2015.10.032
2 WANG P, CHEN H P, KOPITTKE P M, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. DOI: 10.1016/j.envpol.2019.03.063
doi: 10.1016/j.envpol.2019.03.063
3 SATARUG S, GARRETT S H, SENS M A, et al. Cadmium, environmental exposure, and health outcomes[J]. Environ-mental Health Perspectives, 2010, 118(2): 182-190. DOI: 10.1289/ehp.0901234
doi: 10.1289/ehp.0901234
4 CLEMENS S, AARTS M G M, THOMINE S, et al. Plant science: the key to preventing slow cadmium poisoning[J]. Trends in Plant Science, 2013, 18(2): 92-99. DOI: 10.1016/j.tplants.2012.08.003
doi: 10.1016/j.tplants.2012.08.003
5 JÄRUP L, ÅKESSON A. Current status of cadmium as an environmental health problem[J]. Toxicology and Applied Pharmacology, 2009, 238(3): 201-208. DOI: 10.1016/j.taap.2009.04.020
doi: 10.1016/j.taap.2009.04.020
6 中华人民共和国环境保护部,中华人民共和国国土资源部.全国土壤污染状况调查公报[R/OL].2014[2022-07-20].
Ministry of Environmental Protection of PRC, Ministry of Land and Resources of PRC. Bulletin of the national survey of soil pollution[R/OL]. 2014[2022-07-20]. (in Chinese)
7 邓美华,朱有为,段丽丽,等.农田土壤重金属污染“边生产边修复”综合防治技术模式解析[J].浙江大学学报(农业与生命科学版),2020,46(2):135-150. DOI:10.3785/j.issn.1008-9209.2019.07.051
DENG M H, ZHU Y W, DUAN L L, et al. Analysis on integrated remediation model of “phytoremediation coupled with agro-production” for heavy metal pollution in farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(2): 135-150. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.07.051
8 YU H, WANG J L, FANG W, et al. Cadmium accumulation in different rice cultivars and screening for pollution-safe cultivars of rice[J]. Science of the Total Environment, 2006, 370: 302-309. DOI: 10.1016/j.scitotenv.2006.06.013
doi: 10.1016/j.scitotenv.2006.06.013
9 KUNENE S C, LIN K S, MDLOVU N V, et al. Speciation and fate of toxic cadmium in contaminated paddy soils and rice using XANES/EXAFS spectroscopy[J]. Journal of Hazardous Materials, 2021, 407: 124879. DOI: 10.1016/j.jhazmat.2020.124879
doi: 10.1016/j.jhazmat.2020.124879
10 BASHIR S, ADEEL M, GULSHAN A B, et al. Effects of organic and inorganic passivators on the immobilization of cadmium in contaminated soils: a review[J]. Environmental Engineering Science, 2019, 36(9): 986-998. DOI: 10.1089/ees.2018.0483
doi: 10.1089/ees.2018.0483
11 冯敬云,聂新星,刘波,等.镉污染农田原位钝化修复效果及其机制研究进展[J].农业资源与环境学报,2021,38(5):764-777. DOI:10.13254/j.jare.2020.0521
FENG J Y, NIE X X, LIU B, et al. Efficiency of in-situ passivation remediation in cadmium-contaminated farmland soil and its mechanism: a review[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 764-777. (in Chinese with English abstract)
doi: 10.13254/j.jare.2020.0521
12 巩龙达,陈凯,李丹,等.复合钝化剂施用水平对镉污染农田土壤的修复效果[J].浙江大学学报(农业与生命科学版),2022,48(3):359-368. DOI:10.3785/j.issn.1008-9209.2021.05.172
GONG L D, CHEN K, LI D, et al. Remediation effects of mixed amendment at different application levels on cadmium-contaminated farmland soil[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(3): 359-368. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2021.05.172
13 徐建明,孟俊,刘杏梅,等.我国农田土壤重金属污染防治与粮食安全保障[J].中国科学院院刊,2018,33(2):153-159. DOI:10.16418/j.issn.1000-3045.2018.02.004
XU J M, MENG J, LIU X M, et al. Control of heavy metal pollution in farmland of China in terms of food security[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 153-159. (in Chinese with English abstract)
doi: 10.16418/j.issn.1000-3045.2018.02.004
14 孟龙.轻中度镉污染农田土壤安全利用研究[D].浙江,杭州:浙江大学,2018.
MENG L. Study on safe utilization of farmland soil with mild and moderate cadmium pollution[D]. Hangzhou, Zhejiang: Zhejiang University, 2018. (in Chinese with English abstract)
15 WEN E G, YANG X, CHEN H B, et al. Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil[J]. Journal of Hazardous Materials, 2021, 407: 124344. DOI: 10.1016/j.jhazmat.2020.124344
doi: 10.1016/j.jhazmat.2020.124344
16 梁学峰,韩君,徐应明,等.海泡石及其复配原位修复镉污染稻田[J].环境工程学报,2015,9(9):4571-4577. DOI:10.12030/j.cjee.20150977
LIANG X F, HAN J, XU Y M, et al. In-situ remediation of Cd polluted paddy soil using sepiolite and combined amendments[J]. Chinese Journal of Environmental Engi-neering, 2015, 9(9): 4571-4577. (in Chinese with English abstract)
doi: 10.12030/j.cjee.20150977
17 ZHU H H, CHEN C, XU C, et al. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China[J]. Environmental Pollution, 2016, 219: 99-106. DOI: 10.1016/j.envpol.2016.10.043
doi: 10.1016/j.envpol.2016.10.043
18 LI K, CAO C L, MA Y B, et al. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution[J]. Science of the Total Environment, 2019, 692: 1022-1028. DOI: 10.1016/j.scitotenv.2019.07.091
doi: 10.1016/j.scitotenv.2019.07.091
19 SUN L, WANG R G, TANG W B, et al. Robust identification of low-Cd rice varieties by boosting the genotypic effect of grain Cd accumulation in combination with marker-assisted selection[J]. Journal of Hazardous Materials, 2022, 424(Pt D): 127703. DOI: 10.1016/j.jhazmat.2021.127703
doi: 10.1016/j.jhazmat.2021.127703
20 HE R Z, PENG Z Y, LYU H H, et al. Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal[J]. Science of the Total Environment, 2018, 612: 1177-1186. DOI: 10.1016/j.scitotenv.2017.09.016
doi: 10.1016/j.scitotenv.2017.09.016
21 ZHANG J Y, ZHOU H, ZENG P, et al. Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root[J]. Chemosphere, 2021, 276: 130212. DOI: 10.1016/j.chemosphere.2021.130212
doi: 10.1016/j.chemosphere.2021.130212
22 MA J, CAI H M, HE C W, et al. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells[J]. New Phytologist, 2015, 206(3): 1063-1074. DOI: 10.1111/nph.13276
doi: 10.1111/nph.13276
23 MENG L, HUANG T H, SHI J C, et al. Decreasing cadmium uptake of rice (Oryza sativa L.) in the cadmium-contaminated paddy field through different cultivars coupling with appropriate soil amendments[J]. Journal of Soils and Sediments, 2019, 19(4): 1788-1798. DOI: 10.1007/s11368-018-2186-x
doi: 10.1007/s11368-018-2186-x
24 WANG C R, HUANG Y C, ZHANG C B, et al. Inhibition effects of long-term calcium-magnesia phosphate fertilizer application on Cd uptake in rice: regulation of the iron-nitrogen coupling cycle driven by the soil microbial community[J]. Journal of Hazardous Materials, 2021, 416: 125916. DOI: 10.1016/j.jhazmat.2021.125916
doi: 10.1016/j.jhazmat.2021.125916
25 YANG Y J, XIONG J, TAO L X, et al. Regulatory mechanisms of nitrogen (N) on cadmium (Cd) uptake and accumulation in plants: a review[J]. Science of the Total Environment, 2020, 708: 135186. DOI: 10.1016/j.scitotenv.2019.135186
doi: 10.1016/j.scitotenv.2019.135186
26 HONMA T, OHBA H, KANEKO-KADOKURA A, et al. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains[J]. Environmental Science & Technology, 2016, 50(8): 4178-4185. DOI:10.1021/acs.est.5b05424
doi: 10.1021/acs.est.5b05424
27 WASSMANN R, AULAKH M S. The role of rice plants in regulating mechanisms of methane missions[J]. Biology and Fertility of Soils, 2000, 31(1): 20-29. DOI: 10.1007/s003740050619
doi: 10.1007/s003740050619
28 LU H L, LI K W, NKOH J N, et al. Effects of the increases in soil pH and pH buffering capacity induced by crop residue biochars on available Cd contents in acidic paddy soils[J]. Chemosphere, 2022, 301: 134674. DOI: 10.1016/j.chemosphere.2022.134674
doi: 10.1016/j.chemosphere.2022.134674
29 ZHANG F, PENG R, WANG L F, et al. Iron and sulfur reduction caused by different growth seasons inhibits cadmium transfer in the soil-rice system[J]. Ecotoxicology and Environ-mental Safety, 2022, 236: 113479. DOI: 10.1016/j.ecoenv.2022.113479
doi: 10.1016/j.ecoenv.2022.113479
30 LEE S, AN G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice[J]. Plant, Cell and Environ-ment, 2009, 32(4): 408-416. DOI: 10.1111/j.1365-3040.2009.01935.x
doi: 10.1111/j.1365-3040.2009.01935.x
31 YANG Y J, CHEN J M, HUANG Q N, et al. Can liming reduce cadmium (Cd) accumulation in rice (Oryza sativa) in slightly acidic soils? A contradictory dynamic equilibrium between Cd uptake capacity of roots and Cd immobilisation in soils[J]. Chemosphere, 2018, 193: 547-556. DOI: 10.1016/j.chemosphere.2017.11.061
doi: 10.1016/j.chemosphere.2017.11.061
32 ALI U, ZHONG M, SHAR T, et al. The influence of pH on cadmium accumulation in seedlings of rice (Oryza sativa L.)[J]. Journal of Plant Growth Regulation, 2020, 39(2): 930-940. DOI: 10.1007/s00344-019-10034-x
doi: 10.1007/s00344-019-10034-x
33 YANG Y, WANG M E, CHANG A C, et al. Inconsistent effects of limestone on rice cadmium uptake: results from multi-scale field trials and large-scale investigation[J]. Science of the Total Environment, 2020, 709: 136226. DOI: 10.1016/j.scitotenv.2019.136226
doi: 10.1016/j.scitotenv.2019.136226
34 YANG Y, LI Y L, WANG M E, et al. Limestone dosage response of cadmium phytoavailability minimization in rice: a trade-off relationship between soil pH and amorphous manganese content[J]. Journal of Hazardous Materials, 2021, 403: 123664. DOI: 10.1016/j.jhazmat.2020.123664
doi: 10.1016/j.jhazmat.2020.123664
35 CHEN H P, WANG P, GU Y, et al. The within-field spatial variation in rice grain Cd concentration is determined by soil redox status and pH during grain filling[J]. Environmental Pollution, 2020, 261: 114151. DOI: 10.1016/j.envpol.2020.114151
doi: 10.1016/j.envpol.2020.114151
[1] 邓美华,朱有为,段丽丽,沈菁,冯英. 农田土壤重金属污染“边生产边修复”综合防治技术模式解析[J]. 浙江大学学报(农业与生命科学版), 2020, 46(2): 135-150.
[2] 孟龙,黄涂海,陈謇,钟福林,施加春,徐建明. 镉污染农田土壤安全利用策略及其思考[J]. 浙江大学学报(农业与生命科学版), 2019, 45(3): 263-271.
[3] 郝晓晖 肖宏宇 苏以荣 吴金水 胡荣桂 . 长期不同施肥稻田土壤的氮素形态及矿化作用特征 [J]. 浙江大学学报(农业与生命科学版), 2007, 33(5): 544-550.