Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (5): 633-643    DOI: 10.3785/j.issn.1008-9209.2023.06.171
作物重要细菌和病毒病害专题     
维管束木质化调控植物抗青枯病的研究进展
李陈莹(),王冉,梁岩()
浙江大学农业与生物技术学院生物技术研究所,浙江 杭州 310058
Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants
Chenying LI(),Ran WANG,Yan LIANG()
Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(2188 KB)   HTML
摘要:

细菌性青枯病是由青枯劳尔氏菌(Ralstonia solanacearum)(以下简称“青枯菌”)引起的一种典型的维管束病害,发病后严重影响作物产量与品质。选育抗病品种是从根本上解决青枯病危害的最有效措施,而了解植物免疫反应的分子机制是抗病育种的基础。越来越多的研究表明,维管束免疫具有细胞类型特异性。植物识别青枯菌后,通过信号传导诱导维管束细胞壁木质化,形成植物抵御青枯菌扩散的主要屏障。木质素的合成受到精细的调控,其关键合成酶基因在转录、翻译、时空特异性表达等不同方面受到调控。本文综述了植物对青枯菌的识别和信号传导机制,以及诱导维管束木质化调控青枯病抗性的研究进展,包括诱导木质素合成基因表达、木质素单体转运和聚合、不同木质素类型产生等分子机制,以期为利用维管束木质化改性技术进行青枯病的抗性育种提供理论依据。

关键词: 细菌性青枯病青枯劳尔氏菌木质化细胞壁诱导抗性    
Abstract:

Bacterial wilt, a typical vascular disease caused by Ralstonia solanacearum, is one of the most devastating diseases and dramatically reduces crop yield and quality. The most effective strategy for controlling wilt disease is breeding disease-resistant varieties, which requires understanding the molecular mechanisms underlying plant immune responses against R. solanacearum. However, more and more evidence suggests that vascular immune responses are cell type specific. After sensing of R. solanacearum, the cell wall lignification of vascular tissues plays a vital role in restricting the spread of R. solanacearum. Lignin biosynthesis pathway genes are strictly controlled at the transcriptional, translational, and spatial-temporal specific expression aspects. Here, we summarized the current understanding of the recognition and signal transductionupon R. solanacearum infection and the research progress of pathogen-induced vascular lignification on regulating resistance to R. solanacearum, including the expression of lignin biosynthesis genes, the transport and polymerization of monolignols, and the generation of different types of lignin. We hope that this review will provide a theoretical basis for breeding bacterial wilt disease-resistant cultivars by modifying vascular lignification.

Key words: bacterial wilt    Ralstonia solanacearum    lignification    cell wall    induced resistance
收稿日期: 2023-06-17 出版日期: 2023-11-03
CLC:  S432  
基金资助: 浙江省重点研发计划项目(2021C02009);国家自然科学基金项目(32270289)
通讯作者: 梁岩     E-mail: lichenying@zju.edu.cn;yanliang@zju.edu.cn
作者简介: 李陈莹(https://orcid.org/0009-0008-3817-9866),E-mail:lichenying@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李陈莹
王冉
梁岩

引用本文:

李陈莹,王冉,梁岩. 维管束木质化调控植物抗青枯病的研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 633-643.

Chenying LI,Ran WANG,Yan LIANG. Research progress on the regulation of vascular lignification on defense against bacterial wilt of plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 633-643.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.06.171        https://www.zjujournals.com/agr/CN/Y2023/V49/I5/633

图 1  木质素生物合成途径PAL:苯丙氨酸氨裂合酶;C4H:肉桂酸-4-羟化酶;4CL:4-香豆酸辅酶A连接酶;HCT:羟基肉桂酰基转移酶;C3H:对-香豆酸-3-羟化酶;CCoAOMT:咖啡酰辅酶A-O-甲基转移酶;CCR:肉桂酰辅酶A还原酶;CAD:肉桂醇脱氢酶;PD:被动扩散;ABC trans:ABC转运体;PCA:质子偶联反转运体。
图2  植物免疫信号分子调控木质素生物合成PAMPs:病原体相关分子模式;PRRs:模式识别受体;NLRs:核苷酸结合域并富含亮氨酸重复序列;ROS:活性氧;MAPK:丝裂原激活的蛋白激酶;SOD:超氧化物歧化酶。
1 XUE H, LOZANO-DURÁN R, MACHO A P. Insights into the root invasion by the plant pathogenic bacterium Ralstonia solanacearum [J]. Plants, 2020, 9(4): 516. DOI: 10.3390/plants9040516
doi: 10.3390/plants9040516
2 XIAN L, YU G, WEI Y L, et al. A bacterial effector protein hijacks plant metabolism to support pathogen nutrition[J]. Cell Host & Microbe, 2020, 28(4): 548-557.e7. DOI: 10.1016/j.chom.2020.07.003
doi: 10.1016/j.chom.2020.07.003
3 XIAN L, YU G, MACHO A P. The GABA transaminase GabT is required for full virulence of Ralstonia solanacearum in tomato[J]. microPublication Biology, 2021.
4 JIANG G F, WEI Z, XU J, et al. Bacterial wilt in China: history, current status, and future perspectives[J]. Frontiers in Plant Science, 2017, 8: 1549. DOI: 10.3389/fpls.2017.01549
doi: 10.3389/fpls.2017.01549
5 LOWE-POWER T M, KHOKHANI D, ALLEN C. How Ralstonia solanacearum exploits and thrives in the flowing plant xylem environment[J]. Trends in Microbiology, 2018, 26(11): 929-942. DOI: 10.1016/j.tim.2018.06.002
doi: 10.1016/j.tim.2018.06.002
6 MILLING A, BABUJEE L, ALLEN C. Ralstonia solanacearum extracellular polysaccharide is a specific elicitor of defense responses in wilt-resistant tomato plants[J]. PLoS ONE, 2011, 6(1): e15853. DOI: 10.1371/journal.pone.0015853
doi: 10.1371/journal.pone.0015853
7 邱拓宇,杜文青,朱金籴,等.番茄青枯病防治技术研究进展[J].乡村科技,2022(13):71-73. DOI:10.19345/j.cnki.1674-7909.2022.13.024
QIU T Y, DU W Q, ZHU J D, et al. Research progress of tomato bacterial wilt control technology[J]. Xiangcun Keji, 2022(13): 71-73. (in Chinese)
doi: 10.19345/j.cnki.1674-7909.2022.13.024
8 牛义岭,商丽敏.番茄青枯病的发生及防治[J].现代农业科技,2023(12):100-102, 108. DOI:10.3969/j.issn.1007-5739.2023.12.024
NIU Y L, SHANG L M. Occurrence and control of tomato bacterial wilt[J]. Modern Agricultural Science and Technology, 2023(12): 100-102, 108. (in Chinese)
doi: 10.3969/j.issn.1007-5739.2023.12.024
9 IRIEDA H, TAKANO Y. Epidermal chloroplasts are defense-related motile organelles equipped with plant immune com-ponents[J]. Nature Communications, 2021, 12: 2739. DOI: 10.1038/s41467-021-22977-5
doi: 10.1038/s41467-021-22977-5
10 PAAUW M, VAN HULTEN M, CHATTERJEE S, et al. Hydathode immunity protects the Arabidopsis leaf vasculature against colonization by bacterial pathogens[J]. Current Biology, 2023, 33(4): 697-710.e6. DOI: 10.1016/j.cub.2023.01.013
doi: 10.1016/j.cub.2023.01.013
11 MELOTTO M, UNDERWOOD W, KOCZAN J, et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell, 2006, 126(5): 969-980. DOI: 10.1016/j.cell.2006.06.054
doi: 10.1016/j.cell.2006.06.054
12 PFUND C, TANS-KERSTEN J, DUNNING F M, et al. Flagellin is not a major defense elicitor in Ralstonia solana-cearum cells or extracts applied to Arabidopsis thaliana [J]. Molecular Plant-Microbe Interactions, 2004, 17(6): 696-706. DOI: 10.1094/MPMI.2004.17.6.696
doi: 10.1094/MPMI.2004.17.6.696
13 WEI Y L, BALACEANU A, RUFIAN J S, et al. An immune receptor complex evolved in soybean to perceive a poly-morphic bacterial flagellin[J]. Nature Communications, 2020, 11: 3763. DOI: 10.1038/s41467-020-17573-y
doi: 10.1038/s41467-020-17573-y
14 WANG L, ALBERT M, EINIG E, et al. The pattern-recognition receptor CORE of Solanaceae detects bacterial cold-shock protein[J]. Nature Plants, 2016, 2: 16185. DOI: 10.1038/nplants.2016.185
doi: 10.1038/nplants.2016.185
15 DALLA-RIZZA M, SCHVARTZMAN C, MURCHIO S, et al. Field performance of resistant potato genotypes transformed with the EFR receptor from Arabidopsis thaliana in the absence of bacterial wilt (Ralstonia solanacearum)[J]. The Plant Pathology Journal, 2022, 38(3): 239-247. DOI: 10.5423/PPJ.OA.01.2022.0008
doi: 10.5423/PPJ.OA.01.2022.0008
16 YUAN M H, JIANG Z Y, BI G Z, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity[J]. Nature, 2021, 592(7852): 105-109. DOI: 10.1038/s41586-021-03316-6
doi: 10.1038/s41586-021-03316-6
17 MITTLER R, ZANDALINAS S I, FICHMAN Y, et al. Reactive oxygen species signalling in plant stress responses[J]. Nature Reviews Molecular Cell Biology, 2022, 23: 663-679. DOI: 10.1038/s41580-022-00499-2
doi: 10.1038/s41580-022-00499-2
18 WANG R Y, HE F, NING Y S, et al. Fine-tuning of RBOH-mediated ROS signaling in plant immunity[J]. Trends in Plant Science, 2020, 25(11): 1060-1062. DOI: 10.1016/j.tplants.2020.08.001
doi: 10.1016/j.tplants.2020.08.001
19 WU B Y, LI P, HONG X F, et al. The receptor-like cytosolic kinase RIPK activates NADP-malic enzyme 2 to generate NADPH for fueling ROS production[J]. Molecular Plant, 2022, 15(5): 887-903. DOI: 10.1016/j.molp.2022.03.003
doi: 10.1016/j.molp.2022.03.003
20 LI P, ZHAO L L, QI F, et al. The receptor-like cytoplasmic kinase RIPK regulates broad-spectrum ROS signaling in multiple layers of plant immune system[J]. Molecular Plant, 2021, 14(10): 1652-1667. DOI: 10.1016/j.molp.2021.06.010
doi: 10.1016/j.molp.2021.06.010
21 WANG R, LI C Y, LI Q H, et al. Tomato receptor-like cytosolic kinase RIPK confers broad-spectrum disease resistance without yield penalties[J]. Horticulture Research, 2022, 9: uhac207. DOI: 10.1093/hr/uhac207
doi: 10.1093/hr/uhac207
22 QI P P, HUANG M L, HU X H, et al. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signaling[J]. The Plant Cell, 2022, 34(5): 1666-1683. DOI: 10.1093/plcell/koac015
doi: 10.1093/plcell/koac015
23 MENG X Z, ZHANG S Q. MAPK cascades in plant disease resistance signaling[J]. Annual Review of Phytopathology, 2013, 51: 245-266. DOI: 10.1146/annurev-phyto-082712-102314
doi: 10.1146/annurev-phyto-082712-102314
24 CHEN Y Y, LIN Y M, CHAO T C, et al. Virus-induced gene silencing reveals the involvement of ethylene-, salicylic acid- and mitogen-activated protein kinase-related defense pathways in the resistance of tomato to bacterial wilt[J]. Physiologia Plantarum, 2009, 136(3): 324-335. DOI: 10.1111/j.1399-3054.2009.01226.x
doi: 10.1111/j.1399-3054.2009.01226.x
25 WANG B S, HUANG M S, HE W F, et al. Protein phosphatase StTOPP6 negatively regulates potato bacterial wilt resistance by modulating MAPK signaling[J]. Journal of Experimental Botany, 2023, 74(14): 4208-4224. DOI: 10.1093/jxb/erad145
doi: 10.1093/jxb/erad145
26 YU G, XIAN L, XUE H, et al. A bacterial effector protein prevents MAPK-mediated phosphorylation of SGT1 to suppress plant immunity[J]. PLoS Pathogens, 2020, 16(9): e1008933. DOI: 10.1371/journal.ppat.1008933
doi: 10.1371/journal.ppat.1008933
27 CHEN X K, WANG W B, CAI P P, et al. The role of the MAP kinase-kinase protein StMKK1 in potato immunity to different pathogens[J]. Horticulture Research, 2021, 8: 117. DOI: 10.1038/s41438-021-00556-5
doi: 10.1038/s41438-021-00556-5
28 VASSE J, FREY P, TRIGALET A. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum [J]. Molecular Plant-Microbe Interactions, 1995, 8(2): 241-251.
29 RAHMAN M A, ABDULLAH H, VANHAECKE M. Histopathology of susceptible and resistant Capsicum annuum cultivars infected with Ralstonia solanacearum [J]. Journal of Phytopathology, 1999, 147(3): 129-140. DOI: 10.1111/j.1439-0434.1999.tb03819.x
doi: 10.1111/j.1439-0434.1999.tb03819.x
30 ISHIHARA T, MITSUHARA I, TAKAHASHI H, et al. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato[J]. PLoS ONE, 2012, 7(10): e46763. DOI: 10.1371/journal.pone.0046763
doi: 10.1371/journal.pone.0046763
31 KIM S G, HUR O S, RO N Y, et al. Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedling stage[J]. The Plant Pathology Journal, 2016, 32(1): 58-64. DOI: 10.5423/PPJ.NT.06.2015.0121
doi: 10.5423/PPJ.NT.06.2015.0121
32 NAKAHO K, HIBINO H, MIYAGAWA H. Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues[J]. Journal of Phytopathology, 2000, 148(3): 181-190. DOI: 10.1046/j.1439-0434.2000.00476.x
doi: 10.1046/j.1439-0434.2000.00476.x
33 KASHYAP A, JIMÉNEZ-JIMÉNEZ Á L, ZHANG W Q, et al. Induced ligno-suberin vascular coating and tyramine-derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato[J]. New Phytologist, 2022, 234(4): 1411-1429. DOI: 10.1111/nph.17982
doi: 10.1111/nph.17982
34 BAUCHER M, HALPIN C, PETIT-CONIL M, et al. Lignin: genetic engineering and impact on pulping[J]. Critical Reviews in Biochemistry and Molecular Biology, 2003, 38(4): 305-350. DOI: 10.1080/10409230391036757
doi: 10.1080/10409230391036757
35 VANHOLME R, DE MEESTER B, RALPH J, et al. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56: 230-239. DOI: 10.1016/j.copbio.2019.02.018
doi: 10.1016/j.copbio.2019.02.018
36 BOERJAN W, RALPH J, BAUCHER M. Lignin biosynthesis[J]. Annual Review of Plant Biology, 2003, 54: 519-546. DOI: 10.1146/annurev.arplant.54.031902.134938
doi: 10.1146/annurev.arplant.54.031902.134938
37 VOGT T. Phenylpropanoid biosynthesis[J]. Molecular Plant, 2010, 3(1): 2-20. DOI: 10.1093/mp/ssp106
doi: 10.1093/mp/ssp106
38 BARROS J, SERRANI-YARCE J C, CHEN F, et al. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis[J]. Nature Plants, 2016, 2(6): 16050. DOI: 10.1038/nplants.2016.50
doi: 10.1038/nplants.2016.50
39 BARROS J, DIXON R A. Plant phenylalanine/tyrosine ammonia-lyases[J]. Trends in Plant Science, 2020, 25(1): 66-79. DOI: 10.1016/j.tplants.2019.09.011
doi: 10.1016/j.tplants.2019.09.011
40 PETRIK D L, KARLEN S D, CASS C L, et al. p-coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon [J]. The Plant Journal, 2014, 77(5): 713-726. DOI: 10.1111/tpj.12420
doi: 10.1111/tpj.12420
41 张帅帅,赵历强,许景垚,等.基于转录组测序的杜仲木脂素和木质素生物合成途径及关键酶分析[J].中国中药杂志,2022,47(14):3765-3772. DOI:10.19540/j.cnki.cjcmm.20220414.101
ZHANG S S, ZHAO L Q, XU J Y, et al. Identification of key enzyme genes involved in biosynthesis pathways of lignan and lignin in Eucommia ulmoides based on transcriptome assembly[J]. China Journal of Chinese Materia Medica, 2022, 47(14): 3765-3772. (in Chinese with English abstract)
doi: 10.19540/j.cnki.cjcmm.20220414.101
42 REYT G, RAMAKRISHNA P, SALAS-GONZÁLEZ I, et al. Two chemically distinct root lignin barriers control solute and water balance[J]. Nature Communications, 2021, 12: 2320. DOI: 10.1038/s41467-021-22550-0
doi: 10.1038/s41467-021-22550-0
43 CESARINO I. Structural features and regulation of lignin deposited upon biotic and abiotic stresses[J]. Current Opinion in Biotechnology, 2019, 56: 209-214. DOI: 10.1016/j.copbio.2018.12.012
doi: 10.1016/j.copbio.2018.12.012
44 OGAWA K, KANEMATSU S, ASADA K. Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification[J]. Plant and Cell Physiology, 1997, 38(10): 1118-1126.
45 BARROS J, SERK H, GRANLUND I, et al. The cell biology of lignification in higher plants[J]. Annals of Botany, 2015, 115(7): 1053-1074. DOI: 10.1093/aob/mcv046
doi: 10.1093/aob/mcv046
46 WANG H Z, AVCI U, NAKASHIMA J, et al. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants[J]. PNAS, 2010, 107(51): 22338-22343. DOI: 10.1073/pnas.1016436107
doi: 10.1073/pnas.1016436107
47 TAYLOR-TEEPLES M, LIN L, DE LUCAS M, et al. An Arabidopsis gene regulatory network for secondary cell wall synthesis[J]. Nature, 2015, 517(7536): 571-575. DOI: 10.1038/nature14099
doi: 10.1038/nature14099
48 DOLAN W L, DILKES B P, STOUT J M, et al. Mediator complex subunits MED2, MED5, MED16, and MED23 genetically interact in the regulation of phenylpropanoid biosynthesis[J]. The Plant Cell, 2017, 29(12): 3269-3285. DOI: 10.1105/tpc.17.00282
doi: 10.1105/tpc.17.00282
49 WANG J P, CHUANG L, LOZIUK P L, et al. Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyl-transferase activity in poplar monolignol biosynthesis[J]. PNAS, 2015, 112(27): 8481-8486. DOI: 10.1073/pnas.1510473112
doi: 10.1073/pnas.1510473112
50 YAN X J, LIU J, KIM H, et al. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa [J]. New Phytologist, 2019, 222(1): 244-260. DOI: 10.1111/nph.15505
doi: 10.1111/nph.15505
51 LI H P, ZHANG S L, ZHAO Y L, et al. Identification and characterization of cinnamyl alcohol dehydrogenase encoding genes involved in lignin biosynthesis and resistance to Verticillium dahliae in upland cotton (Gossypium hirsutum L.)[J]. Frontiers in Plant Science, 2022, 13: 840397. DOI: 10.3389/fpls.2022.840397
doi: 10.3389/fpls.2022.840397
52 CHEN Q B, MAN C, LI D N, et al. Arogenate dehydratase isoforms differentially regulate anthocyanin biosynthesis in Arabidopsis thaliana [J]. Molecular Plant, 2016, 9(12): 1609-1619. DOI: 10.1016/j.molp.2016.09.010
doi: 10.1016/j.molp.2016.09.010
53 DONG N Q, LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions[J]. Journal of Integrative Plant Biology, 2021, 63(1): 180-209. DOI: 10.1111/jipb.13054
doi: 10.1111/jipb.13054
54 XIE M, ZHANG J, TSCHAPLINSKI T J, et al. Regulation of lignin biosynthesis and its role in growth-defense tradeoffs[J]. Frontiers in Plant Science, 2018, 9: 1427. DOI: 10.3389/fpls.2018.01427
doi: 10.3389/fpls.2018.01427
55 WAN J X, HE M, HOU Q Q, et al. Cell wall associated immunity in plants[J]. Stress Biology, 2021, 1: 3. DOI: 10.1007/s44154-021-00003-4
doi: 10.1007/s44154-021-00003-4
56 LEE M H, JEON H S, KIM S H, et al. Lignin-based barrier restricts pathogens to the infection site and confers resistance in plants[J]. The EMBO Journal, 2019, 38(23): e101948. DOI: 10.15252/embj.2019101948
doi: 10.15252/embj.2019101948
57 KIM S H, LAM P Y, LEE M H, et al. The Arabidopsis R2R3 MYB transcription factor MYB15 is a key regulator of lignin biosynthesis in effector-triggered immunity[J]. Frontiers in Plant Science, 2020, 11: 583153. DOI: 10.3389/fpls.2020.583153
doi: 10.3389/fpls.2020.583153
58 ZHU Y T, HU X Q, WANG P, et al. GhODO1, an R2R3-type MYB transcription factor, positively regulates cotton resistance to Verticillium dahliae via the lignin biosynthesis and jasmonic acid signaling pathway[J]. International Journal of Biological Macromolecules, 2022, 201: 580-591. DOI: 10.1016/j.ijbiomac.2022.01.120
doi: 10.1016/j.ijbiomac.2022.01.120
59 XIAO S H, HU Q, SHEN J L, et al. GhMYB4 downregulates lignin biosynthesis and enhances cotton resistance to Verticillium dahliae [J]. Plant Cell Reports, 2021, 40(4): 735-751. DOI: 10.1007/s00299-021-02672-x
doi: 10.1007/s00299-021-02672-x
60 LIN H, WANG M Y, CHEN Y, et al. An MKP-MAPK protein phosphorylation cascade controls vascular immunity in plants[J]. Science Advances, 2022, 8(10): eabg8723. DOI: 10.1126/sciadv.abg8723
doi: 10.1126/sciadv.abg8723
61 LI Y Y, WANG L, SUN G W, et al. Digital gene expression analysis of the response to Ralstonia solanacearum between resistant and susceptible tobacco varieties[J]. Scientific Reports, 2021, 11: 3887. DOI: 10.1038/s41598-021-82576-8
doi: 10.1038/s41598-021-82576-8
62 DANG F F, WANG Y N, YU L, et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection[J]. Plant, Cell & Environ-ment, 2013, 36(4): 757-774. DOI: 10.1111/pce.12011
doi: 10.1111/pce.12011
63 QIU Z K, YAN S S, XIA B, et al. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase [J]. Journal of Experimental Botany, 2019, 70(19): 5343-5354. DOI: 10.1093/jxb/erz259
doi: 10.1093/jxb/erz259
64 JOSE J, ÉVA C, BOZSÓ Z, et al. Global transcriptome and targeted metabolite analyses of roots reveal different defence mechanisms against Ralstonia solanacearum infection in two resistant potato cultivars[J]. Frontiers in Plant Science, 2022, 13: 1065419. DOI: 10.3389/fpls.2022.1065419
doi: 10.3389/fpls.2022.1065419
65 CAI W W, YANG S, WU R J, et al. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses[J]. Plant Physiology, 2021, 186(4): 2169-2189. DOI: 10.1093/plphys/kiab190
doi: 10.1093/plphys/kiab190
66 潘晓英,张振臣,袁清华,等.植物抗青枯病的分子机制研究进展[J].植物生理学报,2022,58(4):607-621. DOI:10.13592/j.cnki.ppj.300015
PAN X Y, ZHANG Z C, YUAN Q H, et al. Research advances on molecular mechanisms of resistance to bacterial wilt in plants[J]. Plant Physiology Journal, 2022, 58(4): 607-621. (in Chinese with English abstract)
doi: 10.13592/j.cnki.ppj.300015
67 ZHOU X G, LIAO H C, CHERN M S, et al. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. PNAS, 2018, 115(12): 3174-3179. DOI: 10.1073/pnas.1705927115
doi: 10.1073/pnas.1705927115
68 JEON H S, JANG E, KIM J, et al. Pathogen-induced autophagy regulates monolignol transport and lignin formation in plant immunity[J]. Autophagy, 2023, 19(2): 597-615. DOI: 10.1080/15548627.2022.2085496
doi: 10.1080/15548627.2022.2085496
69 KWON H, CHO D J, LEE H, et al. CCOAOMT1, a candidate cargo secreted via VAMP721/722 secretory vesicles in Arabidopsis [J]. Biochemical and Biophysical Research Com-munications, 2020, 524(4): 977-982. DOI: 10.1016/j.bbrc.2020.02.029
doi: 10.1016/j.bbrc.2020.02.029
70 WANG K K, YU W J, YU G, et al. A bacterial type Ⅲ effector targets plant vesicle-associated membrane proteins[J]. Molecular Plant Pathology, 2023, 24(9): 1154-1167. DOI: 10.1111/mpp.13360
doi: 10.1111/mpp.13360
71 LEE Y, RUBIO M C, ALASSIMONE J, et al. A mechanism for localized lignin deposition in the endodermis[J]. Cell, 2013, 153(2): 402-412. DOI: 10.1016/j.cell.2013.02.045
doi: 10.1016/j.cell.2013.02.045
72 LI Q, QIN X J, QI J J, et al. CsPrx25, a class Ⅲ peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification[J]. Horticulture Research, 2020, 7: 192. DOI: 10.1038/s41438-020-00415-9
doi: 10.1038/s41438-020-00415-9
73 WEI T P, TANG Y, JIA P, et al. A cotton lignin biosynthesis gene, GhLAC4, fine-tuned by ghr-miR397 modulates plant resistance against Verticillium dahliae [J]. Frontiers in Plant Science, 2021, 12: 743795. DOI: 10.3389/fpls.2021.743795
doi: 10.3389/fpls.2021.743795
74 MENDEN B, KOHLHOFF M, MOERSCHBACHER B M. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response[J]. Phytochemistry, 2007, 68(4): 513-520. DOI: 10.1016/j.phytochem.2006.11.011
doi: 10.1016/j.phytochem.2006.11.011
75 HANO C, ADDI M, BENSADDEK L, et al. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures[J]. Planta, 2006, 223(5): 975-989. DOI: 10.1007/s00425-005-0156-1
doi: 10.1007/s00425-005-0156-1
76 EYNCK C, SÉGUIN-SWARTZ G, CLARKE W E, et al. Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa [J]. Molecular Plant Pathology, 2012, 13(8): 887-899. DOI: 10.1111/j.1364-3703.2012.00798.x
doi: 10.1111/j.1364-3703.2012.00798.x
[1] 张翰卿,郜海燕,刘瑞玲,韩延超,房祥军,陈杭君. 不同厚度聚乙烯袋包装对茭白采后品质和木质化的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 55-63.
[2] 李敏, 杨谦, 王疏, 董海, 陈玉玲. 哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1): 65-70.
[3] 姚艳平 刘亚力 徐同等. 化学合成的几丁寡糖类似物诱导黄瓜对镰孢霉枯萎病的抗性[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 8-14.
[4] 唐剑锋  罗湖旭  林咸永  章永松  李刚. 铝胁迫下小麦根细胞壁果胶甲酯酶活性的变化及其与耐铝性的关系[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 145-151.
[5] 林咸永  唐剑锋  李刚  章永松. 铝胁迫下小麦根细胞壁多糖组分含量的变化与其耐铝性的关系[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 724-730.
[6] 宋凤鸣  葛秀春  郑重. 枯萎病菌侵染后棉苗体内谷胱甘肽含量的变化及其与抗病性的关系[J]. 浙江大学学报(农业与生命科学版), 2001, 27(6): 615-618.