Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (4): 445-453    DOI: 10.3785/j.issn.1008-9209.2023.04.181
综述     
油料作物育种的分子工具和技术创新
许玲1(),LIU Hui2(),YAN Guijun2,COWLING Wallace2,周伟军3(),路战远4()
1.浙江理工大学生命科学与医药学院, 浙江 杭州 310018
2.西澳大学农业与环境学院/西澳大学农业研究所, 西澳大利亚州 珀斯 6009
3.浙江大学农业与生物技术学院, 浙江 杭州 310058
4.内蒙古自治区农牧业科学院, 内蒙古 呼和浩特 010031
Molecular tools and technological innovation in oil crop breeding
Ling XU1(),Hui LIU2(),Guijun YAN2,Wallace COWLING2,Weijun ZHOU3(),Zhanyuan LU4()
1.College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
2.UWA School of Agriculture and Environment/The UWA Institute of Agriculture, The University of Western Australia, Perth 6009, WA, Australia
3.College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
4.Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, Inner Mongolia, China
 全文: PDF(885 KB)   HTML
摘要:

油料作物的主要育种目标是提高产量、品质和抗逆性。目前,就产量而言,全球主要油料作物依次为大豆、油菜、向日葵和花生。本文综述了这些主要油料作物育种的分子工具和技术创新,包括基因组选择、基因组编辑、分子设计育种等新技术,指出了当前在遗传研究和育种实践中存在的主要问题,并对技术进展和未来应用前景进行了展望,旨在为油料作物高产、优质、高效育种提供借鉴。

关键词: 油料作物育种分子工具技术创新    
Abstract:

Oil crop breeding programs generally aim to improve yield, quality, and stress resistance. Major oil crops include soybean, rape, sunflower and peanut according to their current production worldwide. This paper reviewed the molecular tools and technological innovation in oil crop breeding, including advanced technologies such as genome selection, genome editing, and molecular design breeding. Challenges exist in current genetic studies and breeding practices, and future perspectives of technological progress and application are also discussed for achieving high yield, high quality, and efficient breeding of oil crops.

Key words: oil crops    breeding    molecular tools    technological innovation
收稿日期: 2023-04-18 出版日期: 2023-08-29
CLC:  S565  
基金资助: 浙江省“三农九方”科技协作计划项目(2022SNJF010);现代作物生产省部共建协同创新中心项目(CIC-MCP);内蒙古自治区科技重大专项(2019ZD009);内蒙古自治区“草原英才”工程领军人才项目;浙江理工大学科研业务费专项资金项目(23042097-Y)
通讯作者: 周伟军,路战远     E-mail: lxu@zstu.edu.cn;hui.liu@uwa.edu.au。;wjzhou@zju.edu.cn;lzhy281@163.com
作者简介: 许玲(https://orcid.org/0000-0003-0749-6195),E-mail: lxu@zstu.edu.cn|Hui LIU(https://orcid.org/0000-0003-1653-5774),E-mail:hui.liu@uwa.edu.au。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
许玲
LIU Hui
YAN Guijun
COWLING Wallace
周伟军
路战远

引用本文:

许玲,LIU Hui,YAN Guijun,COWLING Wallace,周伟军,路战远. 油料作物育种的分子工具和技术创新[J]. 浙江大学学报(农业与生命科学版), 2023, 49(4): 445-453.

Ling XU,Hui LIU,Guijun YAN,Wallace COWLING,Weijun ZHOU,Zhanyuan LU. Molecular tools and technological innovation in oil crop breeding. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(4): 445-453.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.04.181        https://www.zjujournals.com/agr/CN/Y2023/V49/I4/445

油料作物

Oil crop

育种目标性状

Target trait for breeding

分子工具或

技术创新

Molecular tool

or technological

innovation

主要结果

Key result

文献

Reference

大豆

Soybean

产量基因组选择基因组选择可成功预测遗传力高的性状,如蛋白质和含油量[21]
品质转基因大豆油基因被改变(如在脂肪酸去饱和酶2基因FAD2-1AFAD2-1B中引入突变)后,多不饱和脂肪酸的百分比增加了4倍[22-23]
抗逆性基因编辑通过靶向切割NBS-LRRs基因的串联重复区域并随后修复DNA,开发出大豆中新型R基因旁系同源物[24-25]

油菜

Rape

产量基因组选择基因组选择有望加速油菜籽育种进程[26-27]
品质基因编辑CRISPR介导的技术已被用于许多改善菜籽油的研究[28]
抗逆性基因编辑BnaALS基因经过碱基编辑后产生了抗除草剂油菜[29]
产量液相芯片油菜50K泛基因组液相捕获芯片BnaPan50T[30]

花生

Peanut

产量多组学分析多组学分析表明,木质素积累会影响花生荚大小,从而影响花生产量[31]
品质、抗逆性转基因一些优质和抗逆基因已通过转基因技术成功转入花生[32]

向日葵

Sunflower

产量遥感和卫星图像利用遥感能在田间水平上预测葵花籽产量[33]
品质、抗逆性

转基因、多组学

分析

有几种性状尝试过转基因处理,但尚未有商业化的转基因向日葵品种;多组学研究明确了向日葵在干旱条件下的代谢途径和中心转录因子[34-36]
表1  主要油料作物在产量、品质和抗逆性育种中利用分子工具和技术创新的示例
1 TOKEL D, ERKENCIOGLU B N. Production and trade of oil crops, and their contribution to the world economy[M]//TOMBULOGLU H, UNVER T, TOMBULOGLU G, et al. Oil Crop Genomics. Cham, Switzerland: Springer, 2021: 415-427. DOI: 10.1007/978-3-030-70420-9_20
doi: 10.1007/978-3-030-70420-9_20
2 United States Department of Agriculture. Foreign Agricultural Service. Oilseeds: World Markets and Trade[R/OL]. 2023-01-12[2023-04-08].
3 WITTKOP B, SNOWDON R J, FRIEDT W. Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe[J]. Euphytica, 2009, 170(1/2): 131-140. DOI: 10.1007/s10681-009-9940-5
doi: 10.1007/s10681-009-9940-5
4 Organization for Economic Co-operation and Development (OECD), Food and Agriculture Organization of the United Nations (FAO). OECD-FAO Agricultural Outlook 2021—2030 [M]. Paris, France: OECD Publishing, 2021. DOI: 10.1787/19428846-en
doi: 10.1787/19428846-en
5 United States Department of Agriculture. Foreign Agricultural Service. China: Biofuels Annual[R/OL]. 2021-09-16[2023-02-04].
6 WANG F, XIONG X R, LIU C Z. Biofuels in China: opportunities and challenges[J]. In Vitro Cellular & Develop-mental Biology-Plant, 2009, 45(3): 342-349. DOI: 10.1007/s11627-009-9209-7
doi: 10.1007/s11627-009-9209-7
7 PARK B, BURKE J M. Phylogeography and the evolutionary history of sunflower (Helianthus annuus L.): wild diversity and the dynamics of domestication[J]. Genes, 2020, 11(3): 266. DOI: 10.3390/genes11030266
doi: 10.3390/genes11030266
8 DIMITRIJEVIC A, HORN R. Sunflower hybrid breeding: from markers to genomic selection[J]. Frontiers in Plant Science, 2018, 8: 2238. DOI: 10.3389/fpls.2017.02238
doi: 10.3389/fpls.2017.02238
9 WANI S H, SAINI H K, GUPTA V, et al. Present status and future prospects for heterosis breeding in sunflower (Helianthus annuus L.)[J]. Asian Journal of Science and Technology, 2010, 2: 49-54.
10 LIN J J, KUO J, MA J, et al. Identification of molecular markers in soybean comparing RFLP, RAPD and AFLP DNA mapping techniques[J]. Plant Molecular Biology Reporter, 1996, 14(2): 156-169.
11 RABOANATAHIRY N, LI H X, YU L J, et al. Rapeseed (Brassica napus): processing, utilization, and genetic improve-ment[J]. Agronomy, 2021, 11(9): 1776. DOI: 10.3390/agronomy11091776
doi: 10.3390/agronomy11091776
12 LYU P, HOU J H, YU H F, et al. High-density genetic linkage map construction in sunflower (Helianthus annuus L.) using SNP and SSR markers[J]. Current Bioinformatics, 2020, 15(8): 889-897. DOI: 10.2174/1574893615666200324134725
doi: 10.2174/1574893615666200324134725
13 WANG J, YAN C X, LI Y, et al. GWAS discovery of candidate genes for yield-related traits in peanut and support from earlier QTL mapping studies[J]. Genes, 2019, 10(10): 803. DOI: 10.3390/genes10100803
doi: 10.3390/genes10100803
14 CHUGH V, KAUR D, PURWAR S, et al. Applications of molecular markers for developing abiotic-stress-resilient oilseed crops[J]. Life, 2023, 13: 88. DOI: 10.3390/life13010088
doi: 10.3390/life13010088
15 International Atomic Energy Agency (IAEA). Improvement of New and Traditional Industrial Crops by Induced Mutations and Related Biotechnology[M]. Vienna, Austria: IAEA, 2003.
16 VALLIYODAN B, BROWN A V, WANG J X, et al. Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing[J]. Scientific Data, 2021, 8: 50. DOI: 10.1038/s41597-021-00834-w
doi: 10.1038/s41597-021-00834-w
17 NADEEM M A, NAWAZ M A, SHAHID M Q, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing[J]. Biotechnology & Biotechnological Equipment, 2018, 32(2): 261-285. DOI: 10.1080/13102818.2017.1400401
doi: 10.1080/13102818.2017.1400401
18 LIU Y C, DU H L, LI P C, et al. Pan-genome of wild and cultivated soybeans[J]. Cell, 2020, 182: 162-176. DOI: 10.1016/j.cell.2020.05.023
doi: 10.1016/j.cell.2020.05.023
19 RATHNAKUMAR A L, SUJATHA M. Breeding major oilseed crops: prospects and future research needs[M]//GOSAL S S, WANI S H. Accelerated Plant Breeding:Vol. 4. Cham, Switzerland: Springer, 2022: 1-40. DOI: 10.1007/978-3-030-81107-5_1
doi: 10.1007/978-3-030-81107-5_1
20 HE J J, ZHANG K, TANG M, et al. CRISPR-based genome editing technology and its applications in oil crops[J]. Oil Crop Science, 2021, 6(3): 105-113. DOI: 10.1016/j.ocsci.2021.07.002
doi: 10.1016/j.ocsci.2021.07.002
21 STEWART-BROWN B B, SONG Q J, VAUGHN J N, et al. Genomic selection for yield and seed composition traits within an applied soybean breeding program[J]. G3: Genes Genomes Genetics, 2019, 9(7): 2253-2265. DOI: 10.1534/g3.118.200917
doi: 10.1534/g3.118.200917
22 HAUN W, COFFMAN A, CLASEN B M, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnology Journal, 2014, 12(7): 934-940. DOI: 10.1111/pbi.12201
doi: 10.1111/pbi.12201
23 STEINWAND M A, RONALD P C. Crop biotechnology and the future of food[J]. Nature Food, 2020, 1(5): 273-283. DOI: 10.1038/s43016-020-0072-3
doi: 10.1038/s43016-020-0072-3
24 BISHT A, SAINI D K, KAUR B, et al. Multi-omics assisted breeding for biotic stress resistance in soybean[J]. Molecular Biology Reports, 2023, 50(4): 3787-3814. DOI: 10.1007/s11033-023-08260-4
doi: 10.1007/s11033-023-08260-4
25 NAGY E D, STEVENS J L, YU N L, et al. Novel disease resistance gene paralogs created by CRISPR/Cas9 in soy[J]. Plant Cell Reports, 2021, 40(6): 1047-1058. DOI: 10.1007/s00299-021-02678-5
doi: 10.1007/s00299-021-02678-5
26 HU J H, CHEN B Y, ZHAO J, et al. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding[J]. Nature Genetics, 2022, 54(5): 694-704. DOI: 10.1038/s41588-022-01055-6
doi: 10.1038/s41588-022-01055-6
27 ROY J, SHAIKH T M, DEL RÍO MENDOZA L, et al. Genome-wide association mapping and genomic prediction for adult stage sclerotinia stem rot resistance in Brassica napus (L) under field environments[J]. Scientific Reports, 2021, 11: 21773. DOI: 10.1038/s41598-021-01272-9
doi: 10.1038/s41598-021-01272-9
28 ALI E, ZHANG K W. CRISPR-mediated technology for seed oil improvement in rapeseed: challenges and future perspectives[J]. Frontiers in Plant Science, 2023, 14: 1086847. DOI: 10.3389/fpls.2023.1086847
doi: 10.3389/fpls.2023.1086847
29 HU L M, AMOO O, LIU Q Q, et al. Precision genome engineering through cytidine base editing in rapeseed (Brassica napus L.)[J]. Frontiers in Genome Editing, 2020, 2: 605768. DOI: 10.3389/fgeed.2020.605768
doi: 10.3389/fgeed.2020.605768
30 LI X D, LIU X M, FAN Y H, et al. Development of a target capture sequencing SNP genotyping platform for genetic analysis and genomic breeding in rapeseed[J]. The Crop Journal, 2023, 11(2): 499-510. DOI: 10.1016/j.cj.2022.08.008
doi: 10.1016/j.cj.2022.08.008
31 LÜ Z H, ZHOU D Y, SHI X L, et al. Comparative multi-omics analysis reveals lignin accumulation affects peanut pod size[J]. International Journal of Molecular Sciences, 2022, 23(21): 13533. DOI: 10.3390/ijms232113533
doi: 10.3390/ijms232113533
32 MOTAGI B N, BHAT R S, PUJER S, et al. Genetic enhancement of groundnut: current status and future prospects[M]//GOSAL S S, WANI S H. Accelerated Plant Breeding:Vol. 4. Cham, Switzerland: Springer, 2022: 63-110. DOI: 10.1007/978-3-030-81107-5_3
doi: 10.1007/978-3-030-81107-5_3
33 AMANKULOVA K, FARMONOV N, MUCSI L. Time-series analysis of sentinel-2 satellite images for sunflower yield estimation[J]. Smart Agricultural Technology, 2023, 3: 100098. DOI: 10.1016/j.atech.2022.100098
doi: 10.1016/j.atech.2022.100098
34 JOCKOVIĆ M, JOCIĆ S, CVEJIĆ S, et al. Genetic improve-ment in sunflower breeding-integrated omics approach[J]. Plants, 2021, 10(6): 1150. DOI: 10.3390/plants10061150
doi: 10.3390/plants10061150
35 MOSCHEN S, DI RIENZO J A, HIGGINS J, et al. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.)[J]. Plant Molecular Biology, 2017, 94(4/5): 549-564. DOI: 10.1007/s11103-017-0625-5
doi: 10.1007/s11103-017-0625-5
36 SHERI V, MUDDANURU T, MULPURI S. Genetic engi-neering of sunflower(Helianthus annuus L.) for important agronomic traits[M]//KAVI KISHOR P B, RAJAM M V, PULLAIAH T. Genetically Modified Crops. Singapore: Springer, 2021: 175-200. DOI: 10.1007/978-981-15-5897-9_9
doi: 10.1007/978-981-15-5897-9_9
37 FAN M S, SHEN J B, YUAN L X, et al. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China[J]. Journal of Experimental Botany, 2012, 63(1): 13-24. DOI: 10.1093/jxb/err248
doi: 10.1093/jxb/err248
38 DIERS B W, SPECHT J, RAINEY K M, et al. Genetic architecture of soybean yield and agronomic traits[J]. G3: Genes Genomes Genetics, 2018, 8(10): 3367-3375. DOI: 10.1534/g3.118.200332
doi: 10.1534/g3.118.200332
39 VOGEL J T, LIU W D, OLHOFT P, et al. Soybean yield formation physiology-a foundation for precision breeding based improvement[J]. Frontiers in Plant Science, 2021, 12: 719706. DOI: 10.3389/fpls.2021.719706
doi: 10.3389/fpls.2021.719706
40 GHAFFARI G, TOORCHI M, AHARIZAD S, et al. Relationship between physiological and seed yield related traits in winter rapeseed (Brassica napus L.) cultivars under water deficit stress[J]. American Journal of Agriculture and Forestry, 2014, 2(6): 262-266. DOI: 10.11648/j.ajaf.20140206.15
doi: 10.11648/j.ajaf.20140206.15
41 CONNOR D J, SADRAS V O. Physiology of yield expression in sunflower[J]. Field Crops Research, 1992, 30(3/4): 333-389.
42 JOCIĆ S, MILADINOVIĆ D, KAYA Y, et al. Breeding and genetics of sunflower[J]. Sunflower, 2015: 1-25. DOI: 10.1016/B978-1-893997-94-3.50007-6
doi: 10.1016/B978-1-893997-94-3.50007-6
43 DESMAE H, JANILA P, OKORI P, et al. Genetics, genomics and breeding of groundnut (Arachis hypogaea L.)[J]. Plant Breeding, 2019, 138(4): 425-444. DOI: 10.1111/pbr.12645
doi: 10.1111/pbr.12645
44 SINGH A L. Physiological basis for realizing yield potentials in groundnut[M]//HEMANTRANJAN A. Advances in Plant Physiology: Vol. 12. Jodhpur, India: Scientific Publishers, 2011: 131-242.
45 SAVADI S, LAMBANI N, KASHYAP P L, et al. Genetic engineering approaches to enhance oil content in oilseed crops[J]. Plant Growth Regulation, 2017, 83(2): 207-222. DOI: 10.1007/s10725-016-0236-1
doi: 10.1007/s10725-016-0236-1
46 SILVA L C C, MATTA L B DA, PEREIRA G R, et al. Association studies and QTL mapping for soybean oil content and composition[J]. Euphytica, 2021, 217(2): 24. DOI: 10.1007/s10681-020-02755-y
doi: 10.1007/s10681-020-02755-y
47 ABBADI A, LECKBAND G. Rapeseed breeding for oil content, quality, and sustainability[J]. European Journal of Lipid Science and Technology, 2011, 113(10): 1198-1206. DOI: 10.1002/ejlt.201100063
doi: 10.1002/ejlt.201100063
48 PARMAR S, SHARMA V, BOMIREDDY D, et al. Recent advances in genetics, genomics, and breeding for nutritional quality in groundnut[M]//GOSAL S S, WANI S H. Accelerated Plant Breeding:Vol. 4. Cham, Switzerland: Springer, 2022: 111-137. DOI: 10.1007/978-3-030-81107-5_4
doi: 10.1007/978-3-030-81107-5_4
49 DOWNEY R K, CRAIG B M, YOUNGS C G. Breeding rapeseed for oil and meal quality[J]. Journal of the American Oil Chemists Society, 1969, 46(3): 121-123.
50 ANSARI S B, RAINA A, AMIN R, et al. Mutation breeding for quality improvement: a case study for oilseed crops[M]//BHAT T A. Mutagenesis, Cytotoxicity and Crop Improvement: Revolutionizing Food Science. Newcastle, UK: Cambridge Scholars Publishing, 2021: 171-221.
51 FERNÁNDEZ-MARTĺNEZ J M, PÉREZ-VICH B, VELASCO L, et al. Breeding for specialty oil types in sunflower[J]. Helia, 2014, 30(46): 75-84. DOI: 10.2298/HEL0746075F
doi: 10.2298/HEL0746075F
52 RAZA A. Eco-physiological and biochemical responses of rapeseed (Brassica napus L.) to abiotic stresses: conse-quences and mitigation strategies[J]. Journal of Plant Growth Regulation, 2021, 40(4): 1368-1388. DOI: 10.1007/s00344-020-10231-z
doi: 10.1007/s00344-020-10231-z
53 POUDEL S, VENNAM R R, SHRESTHA A, et al. Resilience of soybean cultivars to drought stress during flowering and early-seed setting stages[J]. Scientific Reports, 2023, 13: 1277. DOI: 10.1038/s41598-023-28354-0
doi: 10.1038/s41598-023-28354-0
54 CHEN Q Y, TIAN F. Towards knowledge-driven breeding[J]. Nature Plants, 2021, 7(3): 242-243. DOI: 10.1038/s41477-021-00864-7
doi: 10.1038/s41477-021-00864-7
55 ATTIA Z, POGODA C S, REINERT S, et al. Breeding for sustainable oilseed crop yield and quality in a changing climate[J]. Theoretical and Applied Genetics, 2021, 134(6): 1817-1827. DOI: 10.1007/s00122-021-03770-w
doi: 10.1007/s00122-021-03770-w
56 MILADINOVIĆ D, VOLLMANN J, MOLINERO-RUIZ L, et al. Editorial: advances in oil crops research-classical and new approaches to achieve sustainable productivity[J]. Frontiers in Plant Science, 2019, 10: 791. DOI: 10.3389/fpls.2019.00791
doi: 10.3389/fpls.2019.00791
57 ARYA H, SINGH M B, BHALLA P L. Towards developing drought-smart soybeans[J]. Frontiers in Plant Science, 2021, 12: 750664. DOI: 10.3389/fpls.2021.750664
doi: 10.3389/fpls.2021.750664
58 RAUF S. Breeding strategies for sunflower (Helianthus annuus L.) genetic improvement[M]//AL-KHAYRI J M, JAIN S M, JOHNSON D V. Advances in Plant Breeding Strategies: Industrial and Food Crops:Vol. 6. Cham, Switzerland: Springer, 2019: 637-673. DOI: 10.1007/978-3-030-23265-8_16
doi: 10.1007/978-3-030-23265-8_16
59 ARAVIND B, NAYAK S N, CHOUDHARY R S, et al. Integration of genomics approaches in abiotic stress tolerance in groundnut (Arachis hypogaea L.): an overview[M]//KOLE C. Genomic Designing for Abiotic Stress Resistant Oilseed Crops. Berlin, Germany: Springer, 2022: 149-197. DOI: 10.1007/978-3-030-90044-1_4
doi: 10.1007/978-3-030-90044-1_4
60 YAN G J, LIU H, WANG H B, et al. Accelerated generation of selfed pure line plants for gene identification and crop breeding[J]. Frontiers in Plant Science, 2017, 8: 1786. DOI: 10.3389/fpls.2017.01786
doi: 10.3389/fpls.2017.01786
61 FANG Y D, WANG L W, SAPEY E, et al. Speed-breeding system in soybean: integrating off-site generation advancement, fresh seeding, and marker-assisted selection[J]. Frontiers in Plant Science, 2021, 12: 717077. DOI: 10.3389/fpls.2021.717077
doi: 10.3389/fpls.2021.717077
62 WATSON A, GHOSH S, WILLIAMS M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nature Plants, 2018, 4: 23-29. DOI: 10.1038/s41477-017-0083-8
doi: 10.1038/s41477-017-0083-8
63 O’CONNOR D J, WRIGHT G C, DIETERS M J, et al. Development and application of speed breeding technologies in a commercial peanut breeding program[J]. Peanut Science, 2013, 40(2): 107-114. DOI: 10.3146/ps12-12.1
doi: 10.3146/ps12-12.1
64 COWLING W A, CASTRO-URREA F A, STEFANOVA K T, et al. Optimal contribution selection improves the rate of genetic gain in grain yield and yield stability in spring canola in Australia and Canada[J]. Plants, 2023, 12(2): 383. DOI: 10.3390/plants12020383
doi: 10.3390/plants12020383
65 ZHANG Z B, DUNWELL J M, ZHANG Y M. An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus [J]. BMC Plant Biology, 2018, 18: 328. DOI: 10.1186/s12870-018-1542-8
doi: 10.1186/s12870-018-1542-8
66 CHU J S C, PENG B, TANG K Q, et al. Eight soybean reference genome resources from varying latitudes and agronomic traits[J]. Scientific Data, 2021, 8: 164. DOI: 10.1038/s41597-021-00947-2
doi: 10.1038/s41597-021-00947-2
67 SONG J M, GUAN Z L, HU J L, et al. Eight high-quality genomes reveal pan-genome architecture and ecotype differ-entiation of Brassica napus [J]. Nature Plants, 2020, 6: 34-45. DOI: 10.1038/s41477-019-0577-7
doi: 10.1038/s41477-019-0577-7
68 WU D Z, LIANG Z, YAN T, et al. Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence[J]. Molecular Plant, 2019, 12(1): 30-43. DOI: 10.1016/j.molp.2018.11.007
doi: 10.1016/j.molp.2018.11.007
69 BADOUIN H, GOUZY J, GRASSA C J, et al. The sunflower genome provides insights into oil metabolism, flowering and asterid evolution[J]. Nature, 2017, 546(7656): 148-152. DOI: 10.1038/nature22380
doi: 10.1038/nature22380
70 ZHUANG W J, CHEN H, YANG M, et al. The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication[J]. Nature Genetics, 2019, 51(5): 865-876. DOI: 10.1038/s41588-019-0402-2
doi: 10.1038/s41588-019-0402-2
71 TORKAMANEH D, LAROCHE J, VALLIYODAN B, et al. Soybean (Glycine max) haplotype map (GmHapMap): a universal resource for soybean translational and functional genomics[J]. Plant Biotechnology Journal, 2021, 19(2): 324-334. DOI: 10.1111/pbi.13466
doi: 10.1111/pbi.13466
72 KASHYAP H, AHMED H A, HOQUE N, et al. Big data analytics in bioinformatics: architectures, techniques, tools and issues[J]. Network Modeling Analysis in Health Informatics and Bioinformatics, 2016, 5: 28. DOI: 10.1007/s13721-016-0135-4
doi: 10.1007/s13721-016-0135-4
73 HICKEY J M, CHIURUGWI T, MACKAY I, et al. Genomic prediction unifies animal and plant breeding programs to form platforms for biological discovery[J]. Nature Genetics, 2017, 49(9): 1297-1303. DOI: 10.1038/ng.3920
doi: 10.1038/ng.3920
74 SARADADEVI R, MUKANKUSI C, LI L, et al. Multivariate genomic analysis and optimal contribution selection predicts high genetic gains in cooking time, iron, zinc, and grain yield in common beans in East Africa[J]. Plant Genome, 2021, 14(3): e20156. DOI: 10.1002/tpg2.20156
doi: 10.1002/tpg2.20156
75 WANG H, WANG H Y. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits[J]. Molecular Plant, 2015, 8(5): 677-688. DOI: 10.1016/j.molp.2015.01.008
doi: 10.1016/j.molp.2015.01.008
76 MATEI G, WOYANN L G, MILIOLI A S, et al. Genomic selection in soybean: accuracy and time gain in relation to phenotypic selection[J]. Molecular Breeding, 2018, 38(9): 117. DOI: 10.1007/s11032-018-0872-4
doi: 10.1007/s11032-018-0872-4
77 JANILA P, VARIATH M T, PANDEY M K, et al. Genomic tools in groundnut breeding program: status and perspectives[J]. Frontiers in Plant Science, 2016, 7: 289. DOI: 10.3389/fpls.2016.00289
doi: 10.3389/fpls.2016.00289
78 BAO A L, ZHANG C J, HUANG Y, et al. Genome editing technology and application in soybean improvement[J]. Oil Crop Science, 2020, 5: 31-40. DOI: 10.1016/j.ocsci.2020.03.001
doi: 10.1016/j.ocsci.2020.03.001
79 CARRIJO J, ILLA-BERENGURE E, LAFAYETTE P, et al. Two efficient CRISPR/Cas9 systems for gene editing in soybean[J]. Transgenic Research, 2021, 30(3): 239-249. DOI: 10.1007/s11248-021-00246-x
doi: 10.1007/s11248-021-00246-x
80 XU H, ZHANG L X, ZHANG K, et al. Progresses, challenges, and prospects of genome editing in soybean (Glycine max)[J]. Frontiers in Plant Science, 2020, 11: 571138. DOI: 10.3389/fpls.2020.571138
doi: 10.3389/fpls.2020.571138
81 ZHAI Y G, CAI S L, HU L M, et al. CRISPR/Cas9-mediated genome editing reveals differences in the contribution of INDEHISCENT homologues to pod shatter resistance in Brassica napus L.[J]. Theoretical and Applied Genetics, 2019, 132(7): 2111-2123. DOI: 10.1007/s00122-019-03341-0
doi: 10.1007/s00122-019-03341-0
82 NEELAKANDAN A K, SUBEDI B, TRAORE S M, et al. Base editing in peanut using CRISPR/nCas9[J]. Frontiers in Genome Editing, 2022, 4: 901444. DOI: 10.3389/fgeed.2022.901444
doi: 10.3389/fgeed.2022.901444
83 PAREDDY D, CHENNAREDDY S, ATHONY G, et al. Improved soybean transformation for efficient and high throughput transgenic production[J]. Transgenic Research, 2020, 29(3): 267-281. DOI: 10.1007/s11248-020-00198-8
doi: 10.1007/s11248-020-00198-8
84 ZHANG K, HE J J, LIU L, et al. A convenient, rapid and efficient method for establishing transgenic lines of Brassica napus [J]. Plant Methods, 2020, 16: 43. DOI: 10.1186/s13007-020-00585-6
doi: 10.1186/s13007-020-00585-6
85 GANTAIT S, MONDAL S. Transgenic approaches for genetic improvement in groundnut (Arachis hypogaea L.) against major biotic and abiotic stress factors[J]. Journal of Genetic Engineering and Biotechnology, 2018, 16(2): 537-544. DOI: 10.1016/j.jgeb.2018.08.005
doi: 10.1016/j.jgeb.2018.08.005
86 EVERETT N P, ROBINSON K E P, MASCARENHAS D. Genetic engineering of sunflower (Helianthus annuus L.)[J]. Nature Biotechnology, 1987, 5(11): 1201-1204.
87 ANDERS S, COWLING W, PAREEK A, et al. Gaining acceptance of novel plant breeding technologies[J]. Trends in Plant Science, 2021, 26(6): 575-587. DOI: 10.1016/j.tplants.2021.03.004
doi: 10.1016/j.tplants.2021.03.004
88 王建康,李慧慧,张学才,等.中国作物分子设计育种[J].作物学报,2011,37(2):191-201. DOI:10.3724/sp.J.1006.2011.00191
WANG J K, LI H H, ZHANG X C, et al. Molecular design breeding in crops in China[J]. Acta Agronomica Sinica, 2011, 37(2): 191-201. (in Chinese with English abstract)
doi: 10.3724/sp.J.1006.2011.00191
89 LIU S Y, RAMAN H, XIANG Y, et al. De novo design of future rapeseed crops: challenges and opportunities[J]. The Crop Journal, 2022, 10(3): 587-596. DOI: 10.1016/j.cj.2022.05.003
doi: 10.1016/j.cj.2022.05.003
90 GUO Y F. Molecular design for rice breeding[J]. Nature Food, 2021, 2(11): 849. DOI: 10.1038/s43016-021-00410-w
doi: 10.1038/s43016-021-00410-w
91 TANG W C, TANG R X, GUO T, et al. Remote prediction of oilseed rape yield via gaofen-1 images and a crop model[J]. Remote Sensing, 2022, 14(9): 2041. DOI: 10.3390/rs14092041
doi: 10.3390/rs14092041
[1] 王桂跃, 赵福成, 韩海亮, 包斐, 谭禾平, 俞琦英. 浙江省鲜食玉米新品种产量、品质和抗性分析及其育种目标选择[J]. 浙江大学学报(农业与生命科学版), 2018, 44(3): 343-355.
[2] 陈婷婷,李显富,贾春雷,安雪琴,朱俊,肖立增,戴秀梅,张建奎. 云烟87突变体新品系的特征特性及其DNA指纹图谱鉴定[J]. 浙江大学学报(农业与生命科学版), 2016, 42(2): 179-189.
[3] 樊龙江, 王卫娣, 王斌, 叶楚玉, 舒庆尧, 张辉. 作物育种相关数据及大数据技术育种利用[J]. 浙江大学学报(农业与生命科学版), 2016, 42(1): 30-39.
[4] 王营营, 黄璐, 樊龙江*. 菰(Zizania latifolia)主要农艺性状及其驯化育种[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 629-635.
[5] 吕倩1,吴良欢1,徐建龙2,寿惠霞3,杨肖娥1;. 叶面喷施氨基酸铁肥对稻米铁含量和营养品质的影响[J]. 浙江大学学报(农业与生命科学版), 2010, 36(5): 528-534.
[6] 张慧琴 谢鸣 蒋桂华等. 60Co-γ射线对草莓组培苗诱变效应[J]. 浙江大学学报(农业与生命科学版), 2007, 33(2): 180-183.
[7] 沈圣泉  吴殿星  崔海瑞  夏英武  舒庆尧. Bt转基因抗虫粳稻品种选育中若干问题研究[J]. 浙江大学学报(农业与生命科学版), 2003, 29(5): 499-503.