Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (2): 213-228    DOI: 10.3785/j.issn.1008-9209.2022.03.101
综述     
细胞程序性死亡与脊椎动物胚胎发育综述
栾静云(),徐鹏飞()
浙江大学医学院,浙江 杭州 310058
Review on programmed cell death and vertebrate embryonic development
Jingyun LUAN(),Pengfei XU()
College of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(2010 KB)   HTML
摘要:

脊椎动物胚胎发育是细胞通过分裂、增殖、分化、迁移及细胞程序性死亡等一系列行为进行自我组织的复杂过程。其中,细胞程序性死亡存在于胚胎发育的各个阶段,对胚胎的发育具有重要调控作用,是器官生成、形态建立和组织稳态维持等发育相关事件所必需的。本文对近年来细胞程序性死亡调控脊椎动物胚胎发育过程的相关研究进展进行了综述,包括早期胚胎发育过程中细胞程序性死亡的生物学功能、调节机制及死亡细胞的清除方式等,重点关注了细胞程序性死亡与脊椎动物胚胎发育过程之间的密切联系。本综述将为更全面地了解细胞程序性死亡在脊椎动物胚胎发育过程中的作用提供借鉴与帮助,并有望为将来通过人为调控细胞程序性死亡来提高胚胎发育质量提供一定的思路。

关键词: 细胞程序性死亡脊椎动物胚胎发育    
Abstract:

Vertebrate embryonic development is a complex process in which cells self-organize into a completely formed organism via cell behaviors such as division, proliferation, differentiation, migration, and programmed cell death (PCD). Among these cell behaviors, PCD exists in all stages of embryonic development, playing important roles in organogenesis, morphogenesis, and maintenance of tissue homeostasis. In this review, we summarized recent research progress on the regulation of vertebrate embryonic development by PCD, including the biological function and regulatory mechanism of PCD and clearance of dead cells during early embryonic development, focusing on the close link between PCD and embryonic developmental processes. We hope this review will help build a more comprehensive understanding of the roles of PCD in vertebrate embryonic development, and provide insights into how PCD is manipulated to improve the quality of embryonic development in the future.

Key words: programmed cell death    vertebrate    embryonic development
收稿日期: 2022-03-10 出版日期: 2023-04-27
CLC:  Q593.4  
基金资助: 国家重点研发计划项目(2018YFC1003203)
通讯作者: 徐鹏飞     E-mail: 21918064@zju.edu.cn;pengfei_xu@zju.edu.cn
作者简介: 栾静云(https://orcid.org/0000-0002-7043-0992),E-mail:21918064@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
栾静云
徐鹏飞

引用本文:

栾静云,徐鹏飞. 细胞程序性死亡与脊椎动物胚胎发育综述[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 213-228.

Jingyun LUAN,Pengfei XU. Review on programmed cell death and vertebrate embryonic development. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(2): 213-228.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.03.101        https://www.zjujournals.com/agr/CN/Y2023/V49/I2/213

细胞死亡类型

Cell death type

形态学特征

Morphological characteristic

生化特征

Biochemical characteristic

细胞凋亡 Apoptosis

核碎裂,质膜起泡,染色质凝聚,细胞固缩,凋

亡小体形成

半胱天冬酶被激活,磷脂酰丝氨酸暴露,线粒体跨膜电位(ΔΨm)耗散
细胞自噬 Autophagy双膜自噬泡积累,细胞质空泡化,无染色质凝聚脂化微管相关蛋白轻链3-Ⅰ(LC3-Ⅰ)向LC3-Ⅱ转化,底物降解
细胞坏死 Necrosis质膜破裂,细胞及细胞器肿胀,染色质浓缩腺苷三磷酸(ATP)耗竭,钙蛋白酶和组织蛋白酶参与的蛋白水解,损伤相关分子模式(DAMP)分子释放
铁死亡 Ferroptosis

线粒体变小且密度增加,嵴减少或消失,线粒

体外膜破裂

铁离子及活性氧积累,胱氨酸/谷氨酸反向转运体(system Xc)被激活,谷胱甘肽被消耗,脂质过氧化
细胞焦亡 Pyroptosis质膜破裂,细胞轻度肿胀caspase及消皮素D被激活,大量促炎症因子释放
NETosis核膜分解产生小囊泡,染色质去浓缩中性粒细胞弹性蛋白酶及髓过氧化物酶释放,PAD4被激活
铜死亡 Cuprotosis脂酰化蛋白质聚集,铁硫簇蛋白减少铜离子与脂酰化修饰的蛋白质结合
表1  细胞死亡类型及特征
图1  小鼠胚胎发育过程中细胞程序性死亡的生物学功能
图2  细胞程序性死亡调控组织和器官正确生成A.细胞程序性死亡调控正确形态发生素浓度梯度的建立;B.细胞程序性死亡参与组织和器官生成;C.细胞程序性死亡参与临时性结构或器官的消除;D.细胞程序性死亡调控机体内细胞总数。
图3  早期死亡细胞的消除方式A.上皮细胞通过挤压消除死亡细胞;B1~B2.上皮细胞和神经嵴细胞识别并吞噬死亡细胞(B1.上皮细胞通过吞噬杯及“上皮臂”诱导死亡细胞的快速分散和摄取,这种机械性的“负载共享”机制使多个上皮细胞能够远程协同摄取死亡细胞;B2.神经嵴细胞能够对神经管周围的垂死细胞做出快速反应,随后从其节段受限的路径迁移至死亡细胞并吞噬死亡碎片)。
1 KERR J F R, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. British Journal of Cancer, 1972, 26(4): 239-257. DOI: 10.1038/bjc.1972.33
doi: 10.1038/bjc.1972.33
2 D’ARCY M S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biology International, 2019, 43(6): 582-592. DOI: 10.1002/cbin.11137
doi: 10.1002/cbin.11137
3 HORVITZ H R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans [J]. Cancer Research, 1999, 59(): 1701s-1706s. DOI: 10.1007/978-1-4757-9217-1_1
doi: 10.1007/978-1-4757-9217-1_1
4 HAY B A, GUO M. Caspase-dependent cell death in Drosophila [J]. Annual Review of Cell and Developmental Biology, 2006, 22: 623-650. DOI: 10.1146/annurev.cellbio.21.012804.093845
doi: 10.1146/annurev.cellbio.21.012804.093845
5 TAM P P L, LOEBEL D A F. Gene function in mouse embryogenesis: get set for gastrulation[J]. Nature Reviews Genetics, 2007, 8(5): 368-381. DOI: 10.1038/nrg2084
doi: 10.1038/nrg2084
6 FU X J, CUI J J, MENG X J, et al. Endoplasmic reticulum stress, cell death and tumor: association between endoplasmic reticulum stress and the apoptosis pathway in tumors (review) [J]. Oncology Reports, 2021, 45(3): 801-808. DOI: 10.3892/or.2021.7933
doi: 10.3892/or.2021.7933
7 MARTIN D N, BAEHRECKE E H. Caspases function in autophagic programmed cell death in Drosophila [J]. De-velopment, 2004, 131(2): 275-284. DOI: 10.1242/dev.00933
doi: 10.1242/dev.00933
8 YANG Z F, KLIONSKY D J. Mammalian autophagy: core molecular machinery and signaling regulation[J]. Current Opinion in Cell Biology, 2010, 22(2): 124-131. DOI: 10.1016/j.ceb.2009.11.014
doi: 10.1016/j.ceb.2009.11.014
9 CUERVO A M. Autophagy: many paths to the same end[J]. Molecular and Cellular Biochemistry, 2004, 263(1/2): 55-72. DOI: 10.1023/b:mcbi.0000041848.57020.57
doi: 10.1023/b:mcbi.0000041848.57020.57
10 LALAOUI N, LINDQVIST L M, SANDOW J J, et al. The molecular relationships between apoptosis, autophagy and necroptosis[J]. Seminars in Cell & Developmental Biology, 2015, 39: 63-69. DOI: 10.1016/j.semcdb.2015.02.003
doi: 10.1016/j.semcdb.2015.02.003
11 DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042
doi: 10.1016/j.cell.2012.03.042
12 YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. DOI: 10.1016/j.cell.2013.12.010
doi: 10.1016/j.cell.2013.12.010
13 BERSUKER K, HENDRICKS J M, LI Z P, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2
doi: 10.1038/s41586-019-1705-2
14 WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393
doi: 10.1038/nature22393
15 SARHAN J, LIU B C, MUENDLEIN H I, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. PNAS, 2018, 115(46): E10888-E10897. DOI: 10.1073/pnas.1809548115
doi: 10.1073/pnas.1809548115
16 RAVINDRAN M, KHAN M A, PALANIYAR N. Neutrophil extracellular trap formation: physiology, pathology, and pharma-cology[J]. Biomolecules, 2019, 9(8): 365. DOI: 10.3390/biom9080365
doi: 10.3390/biom9080365
17 YOUSEFI S, SIMON D, STOJKOV D, et al. In vivo evidence for extracellular DNA trap formation[J]. Cell Death & Disease, 2020, 11(4): 300. DOI: 10.1038/s41419-020-2497-x
doi: 10.1038/s41419-020-2497-x
18 THIAM H R, WONG S L, QIU R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture[J]. PNAS, 2020, 117(13): 7326-7337. DOI: 10.1073/pnas.1909546117
doi: 10.1073/pnas.1909546117
19 TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. DOI: 10.1126/science.abf0529
doi: 10.1126/science.abf0529
20 RIVERA-PÉREZ J A, HADJANTONAKIS A K. The dynamics of morphogenesis in the early mouse embryo[J]. Cold Spring Harbor Perspectives in Biology, 2014, 7(11): a015867. DOI: 10.1101/cshperspect.a015867
doi: 10.1101/cshperspect.a015867
21 MORRIS S A, TEO R T Y, LI H L, et al. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo[J]. PNAS, 2010, 107(14): 6364-6369. DOI: 10.1073/pnas.0915063107
doi: 10.1073/pnas.0915063107
22 BEDZHOV I, GRAHAM S J L, LEUNG C Y, et al. Developmental plasticity, cell fate specification and morpho-genesis in the early mouse embryo[J]. Philosophical Tran-sactions of the Royal Society B: Biological Sciences, 2014, 369(1657): 20130538. DOI: 10.1098/rstb.2013.0538
doi: 10.1098/rstb.2013.0538
23 HE L, YE S Y, FANG J, et al. Real-time visualization of embryonic apoptosis using a near-infrared fluorogenic probe for embryo development evaluation[J]. Analytical Chemistry, 2021, 93(35): 12122-12130. DOI: 10.1021/acs.analchem.1c02793
doi: 10.1021/acs.analchem.1c02793
24 LIMPACHAYAPORN P, SCHÄFERS M, HAUFE G. Isatin sulfonamides: potent caspases-3 and -7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging[J]. Future Medicinal Chemistry, 2015, 7(9): 1173-1196. DOI: 10.4155/fmc.15.52
doi: 10.4155/fmc.15.52
25 NASU Y, ASAOKA Y, NAMAE M, et al. Genetically encoded fluorescent probe for imaging apoptosis in vivo with spontaneous GFP complementation[J]. Analytical Chemistry, 2016, 88(1): 838-844. DOI: 10.1021/acs.analchem.5b03367
doi: 10.1021/acs.analchem.5b03367
26 MALUMBRES M, BARBACID M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nature Reviews Cancer, 2009, 9(3): 153-166. DOI: 10.1038/nrc2602
doi: 10.1038/nrc2602
27 SINGLA S, IWAMOTO-STOHL L K, ZHU M, et al. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism[J]. Nature Com-munications, 2020, 11: 2958. DOI: 10.1038/s41467-020-16796-3
doi: 10.1038/s41467-020-16796-3
28 YAO R Q, REN C, XIA Z F, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17(2): 385-401. DOI: 10.1080/15548627.2020.1725377
doi: 10.1080/15548627.2020.1725377
29 MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741. DOI: 10.1016/j.cell.2011.10.026
doi: 10.1016/j.cell.2011.10.026
30 PAMPFER S, DONNAY I. Apoptosis at the time of embryo implantation in mouse and rat[J]. Cell Death and Diffe-rentiation, 1999, 6(6): 533-545. DOI: 10.1038/sj.cdd.4400516
doi: 10.1038/sj.cdd.4400516
31 ORIETTI L C, ROSA V S, ANTONICA F, et al. Embryo size regulates the timing and mechanism of pluripotent tissue morphogenesis[J]. Stem Cell Reports, 2021, 16(5): 1182-1196. DOI: 10.1016/j.stemcr.2020.09.004
doi: 10.1016/j.stemcr.2020.09.004
32 CHIFENTI B, LOCCI M T, LAZZERI G, et al. Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy[J]. Clinical and Experimental Reproductive Medi-cine, 2013, 40(1): 33-37. DOI: 10.5653/cerm.2013.40.1.33
doi: 10.5653/cerm.2013.40.1.33
33 SU Y, ZHANG J J, HE J L, et al. Endometrial autophagy is essential for embryo implantation during early pregnancy[J]. Journal of Molecular Medicine, 2020, 98(4): 555-567. DOI: 10.1007/s00109-019-01849-y
doi: 10.1007/s00109-019-01849-y
34 KAJIWARA K, BEHARIER O, CHNG C P, et al. Ferroptosis induces membrane blebbing in placental trophoblasts[J]. Journal of Cell Science, 2022, 135(5): jcs255737. DOI: 10.1242/jcs.255737
doi: 10.1242/jcs.255737
35 BEHARIER O, TYURIN V A, GOFF J P, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury[J]. PNAS, 2020, 117(44): 27319-27328. DOI: 10.1073/pnas.2009201117
doi: 10.1073/pnas.2009201117
36 AKIEDA Y, OGAMINO S, FURUIE H, et al. Cell compe-tition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo[J]. Nature Com-munications, 2019, 10: 4710. DOI: 10.1038/s41467-019-12609-4
doi: 10.1038/s41467-019-12609-4
37 SANCHO M, DI-GREGORIO A, GEORGE N, et al. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation[J]. Developmental Cell, 2013, 26(1): 19-30. DOI: 10.1016/j.devcel.2013.06.012
doi: 10.1016/j.devcel.2013.06.012
38 KIM J Y, CHA Y G, CHO S W, et al. Inhibition of apoptosis in early tooth development alters tooth shape and size[J]. Journal of Dental Research, 2006, 85(6): 530-535. DOI: 10.1177/154405910608500610
doi: 10.1177/154405910608500610
39 MAKINO K, OMACHI R, SUZUKI H, et al. Apoptosis occurs during early development of the bursa of Fabricius in chicken embryos[J]. Biological & Pharmaceutical Bulletin, 2014, 37(12): 1982-1985. DOI: 10.1248/bpb.b14-00489
doi: 10.1248/bpb.b14-00489
40 LINDSTEN T, ROSS A J, KING A, et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues[J]. Molecular Cell, 2000, 6(6): 1389-1399. DOI: 10.1016/s1097-2765(00)00136-2
doi: 10.1016/s1097-2765(00)00136-2
41 KELLY K A, WEI Y, MIKAWA T. Cell death along the embryo midline regulates left-right sidedness[J]. Develop-mental Dynamics, 2002, 224(2): 238-244. DOI: 10.1002/dvdy.10098
doi: 10.1002/dvdy.10098
42 TOWERS M, TICKLE C. Growing models of vertebrate limb development[J]. Development, 2009, 136(2): 179-190. DOI: 10.1242/dev.024158
doi: 10.1242/dev.024158
43 HERNÁNDEZ-MARTÍNEZ R, COVARRUBIAS L. Inter-digital cell death function and regulation: new insights on an old programmed cell death model[J]. Development Growth & Differentiation, 2011, 53(2): 245-258. DOI: 10.1111/j.1440-169X.2010.01246.x
doi: 10.1111/j.1440-169X.2010.01246.x
44 PAJNI-UNDERWOOD S, WILSON C P, ELDER C, et al. BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling[J]. Development, 2007, 134(12): 2359-2368. DOI: 10.1242/dev.001677
doi: 10.1242/dev.001677
45 YEGANEH B, LEE J, ERMINI L, et al. Autophagy is required for lung development and morphogenesis[J]. Journal of Clinical Investigation, 2019, 129(7): 2904-2919. DOI: 10.1172/JCI127307
doi: 10.1172/JCI127307
46 LEE E, KOO Y, NG A, et al. Autophagy is essential for cardiac morphogenesis during vertebrate development[J]. Autophagy, 2014, 10(4): 572-587. DOI: 10.4161/auto.27649
doi: 10.4161/auto.27649
47 TAN P W, REN Y, ZHANG Y C, et al. Dissecting dynamic expression of autophagy-related genes during human fetal digestive tract development via single-cell RNA sequencing[J]. Autophagy, 2019, 15(11): 2019-2021. DOI: 10.1080/1554 8627.2019.1656956
doi: 10.1080/1554
48 MOUJALLED D, STRASSER A, LIDDELL J R. Molecular mechanisms of cell death in neurological diseases[J]. Cell Death and Differentiation, 2021, 28(7): 2029-2044. DOI: 10.1038/s41418-021-00814-y
doi: 10.1038/s41418-021-00814-y
49 HOU S L, CHEN J R, YANG J. Autophagy precedes apoptosis during degeneration of the Kölliker’s organ in the development of rat cochlea[J]. European Journal of Histo-chemistry, 2019, 63(2): 3025. DOI: 10.4081/ejh.2019.3025
doi: 10.4081/ejh.2019.3025
50 NAKAI Y, NAKAJIMA K, YAOITA Y. Mechanisms of tail resorption during anuran metamorphosis[J]. Biomolecular Concepts, 2017, 8(3/4): 179-183. DOI: 10.1515/bmc-2017-0022
doi: 10.1515/bmc-2017-0022
51 MARUYAMA T, FUJITA Y. Cell competition in vertebrates: a key machinery for tissue homeostasis[J]. Current Opinion in Genetics & Development, 2022, 72: 15-21. DOI: 10.1016/j.gde.2021.09.006
doi: 10.1016/j.gde.2021.09.006
52 HASHIMOTO M, SASAKI H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells[J]. Develop-mental Cell, 2019, 50(2): 139-154. DOI: 10.1016/j.devcel.2019.05.024
doi: 10.1016/j.devcel.2019.05.024
53 FERNANDEZ-ANTORAN D, PIEDRAFITA G, MURAI K, et al. Outcompeting p53-mutant cells in the normal esophagus by redox manipulation[J]. Cell Stem Cell, 2019, 25(3): 329-341. DOI: 10.1016/j.stem.2019.06.011
doi: 10.1016/j.stem.2019.06.011
54 LI F, HUANG Q, CHEN J, et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration[J]. Science Signaling, 2010, 3(110): ra13. DOI: 10.1126/scisignal.2000634
doi: 10.1126/scisignal.2000634
55 VALON L, DAVIDOVIĆ A, LEVILLAYER F, et al. Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination[J]. Develop-mental Cell, 2021, 56(12): 1700-1711. DOI: 10.1016/j.devcel.2021.05.006
doi: 10.1016/j.devcel.2021.05.006
56 PÉREZ-GARIJO A, FUCHS Y, STELLER H. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway[J]. eLife, 2013, 2: e1004. DOI: 10.7554/eLife.01004
doi: 10.7554/eLife.01004
57 ROWE I, LE BLAY K, DU PASQUIER D, et al. Apoptosis of tail muscle during amphibian metamorphosis involves a caspase 9-dependent mechanism[J]. Developmental Dynamics, 2005, 233(1): 76-87. DOI: 10.1002/dvdy.20312
doi: 10.1002/dvdy.20312
58 ANVARIFAR H, AMIRKOLAIE A K, MIANDARE H K, et al. Apoptosis in fish: environmental factors and program-med cell death[J]. Cell and Tissue Research, 2017, 368(3): 425-439. DOI: 10.1007/s00441-016-2548-x
doi: 10.1007/s00441-016-2548-x
59 SILKE J, VINCE J. IAPs and cell death[J]. Current Topics in Microbiology and Immunology, 2017, 403: 95-117. DOI: 10.1007/82_2016_507
doi: 10.1007/82_2016_507
60 FUCHS Y, STELLER H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4): 742-758. DOI: 10.1016/j.cell.2011.10.033
doi: 10.1016/j.cell.2011.10.033
61 OHSAWA S, VAUGHEN J, IGAKI T. Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis[J]. Developmental Cell, 2018, 44(3): 284-296. DOI: 10.1016/j.devcel.2018.01.009
doi: 10.1016/j.devcel.2018.01.009
62 GU Y P, FOROSTYAN T, SABBADINI R, et al. Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway[J]. Journal of Cell Biology, 2011, 193(4): 667-676. DOI: 10.1083/jcb.201010075
doi: 10.1083/jcb.201010075
63 ETIENNE-MANNEVILLE S, HALL A. Rho GTPases in cell biology[J]. Nature, 2002, 420(6916): 629-635. DOI: 10.1038/nature01148
doi: 10.1038/nature01148
64 KUIPERS D, MEHONIC A, KAJITA M, et al. Epithelial repair is a two-stage process driven first by dying cells and then by their neighbours[J]. Journal of Cell Science, 2014, 127(Pt 6): 1229-1241. DOI: 10.1242/jcs.138289
doi: 10.1242/jcs.138289
65 THOMAS M, LADOUX B, TOYAMA Y. Desmosomal junctions govern tissue integrity and actomyosin contractility in apoptotic cell extrusion[J]. Current Biology, 2020, 30(4): 682-690. DOI: 10.1016/j.cub.2020.01.002
doi: 10.1016/j.cub.2020.01.002
66 TAKEUCHI Y, NARUMI R, AKIYAMA R, et al. Calcium wave promotes cell extrusion[J]. Current Biology, 2020, 30(4): 670-681. DOI: 10.1016/j.cub.2019.11.089
doi: 10.1016/j.cub.2019.11.089
67 GUDIPATY S A, ROSENBLATT J. Epithelial cell extrusion: pathways and pathologies[J]. Seminars in Cell & Develop-mental Biology, 2017, 67: 132-140. DOI: 10.1016/j.semcdb.2016.05.010
doi: 10.1016/j.semcdb.2016.05.010
68 NONOMURA K, LUKACS V, SWEET D T, et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation[J]. PNAS, 2018, 115(50): 12817-12822. DOI: 10.1073/pnas.1817070115
doi: 10.1073/pnas.1817070115
69 HOIJMAN E, HÄKKINEN H M, TOLOSA-RAMON Q, et al. Cooperative epithelial phagocytosis enables error correc-tion in the early embryo[J]. Nature, 2021, 590(7847): 618-623. DOI: 10.1038/s41586-021-03200-3
doi: 10.1038/s41586-021-03200-3
70 ZHU Y L, CROWLEY S C, LATIMER A J, et al. Migratory neural crest cells phagocytose dead cells in the developing nervous system[J]. Cell, 2019, 179(1): 74-89. DOI: 10.1016/j.cell.2019.08.001
doi: 10.1016/j.cell.2019.08.001
71 ZAGANJOR I, SEKKARIE A, TSANG B L, et al. Describing the prevalence of neural tube defects worldwide: a systematic literature review[J]. PLoS ONE, 2016, 11(4): e151586. DOI: 10.1371/journal.pone.0151586
doi: 10.1371/journal.pone.0151586
72 MASSA V, SAVERY D, YBOT-GONZALEZ P, et al. Apoptosis is not required for mammalian neural tube closure[J]. PNAS, 2009, 106(20): 8233-8238. DOI: 10.1073/pnas.0900333106
doi: 10.1073/pnas.0900333106
73 TSUKAMOTO S, KUMA A, MURAKAMI M, et al. Autophagy is essential for preimplantation development of mouse embryos[J]. Science, 2008, 321(5885): 117-120. DOI: 10.1126/science.1154822
doi: 10.1126/science.1154822
74 CECCONI F, LEVINE B. The role of autophagy in mammalian development: cell makeover rather than cell death[J]. Developmental Cell, 2008, 15(3): 344-357. DOI: 10.1016/j.devcel.2008.08.012
doi: 10.1016/j.devcel.2008.08.012
75 KANG R, ZENG L, ZHU S, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis[J]. Cell Host & Microbe, 2018, 24(1): 97-108. DOI: 10.1016/j.chom.2018.05.009
doi: 10.1016/j.chom.2018.05.009
76 LEONARD J R, KLOCKE B J, D’SA C, et al. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice[J]. Journal of Neuropathology and Experi-mental Neurology, 2002, 61(8): 673-677. DOI: 10.1093/jnen/61.8.673
doi: 10.1093/jnen/61.8.673
77 GREGG C L, BUTCHER J T. Quantitative in vivo imaging of embryonic development: opportunities and challenges[J]. Differentiation, 2012, 84(1): 149-162. DOI: 10.1016/j.diff.2012.05.003
doi: 10.1016/j.diff.2012.05.003
[1] 张颖洁,徐鹏飞. 脊椎动物左右不对称发育研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 647-659.
[2] 王继玥, 汪生庆, 曹墨菊. 玉米C型细胞质雄性不育系及保持系基因差异表达分析[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 451-455.
[3] 陈金娥 杨惠娟 李建营等 . 家蚕幼虫关联基因在胚胎期的表达(英文)[J]. 浙江大学学报(农业与生命科学版), 2008, 34(1): 38-44.
[4] 彭宇 胡萃 赵敬钊. 真水狼蛛Pirata piraticus卵黄蛋白的研究[J]. 浙江大学学报(农业与生命科学版), 2000, 26(1): 69-74.