综述 |
|
|
|
|
细胞程序性死亡与脊椎动物胚胎发育综述 |
栾静云(),徐鹏飞() |
浙江大学医学院,浙江 杭州 310058 |
|
Review on programmed cell death and vertebrate embryonic development |
Jingyun LUAN(),Pengfei XU() |
College of Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China |
1 |
KERR J F R, WYLLIE A H, CURRIE A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics[J]. British Journal of Cancer, 1972, 26(4): 239-257. DOI: 10.1038/bjc.1972.33
doi: 10.1038/bjc.1972.33
|
2 |
D’ARCY M S. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biology International, 2019, 43(6): 582-592. DOI: 10.1002/cbin.11137
doi: 10.1002/cbin.11137
|
3 |
HORVITZ H R. Genetic control of programmed cell death in the nematode Caenorhabditis elegans [J]. Cancer Research, 1999, 59(): 1701s-1706s. DOI: 10.1007/978-1-4757-9217-1_1
doi: 10.1007/978-1-4757-9217-1_1
|
4 |
HAY B A, GUO M. Caspase-dependent cell death in Drosophila [J]. Annual Review of Cell and Developmental Biology, 2006, 22: 623-650. DOI: 10.1146/annurev.cellbio.21.012804.093845
doi: 10.1146/annurev.cellbio.21.012804.093845
|
5 |
TAM P P L, LOEBEL D A F. Gene function in mouse embryogenesis: get set for gastrulation[J]. Nature Reviews Genetics, 2007, 8(5): 368-381. DOI: 10.1038/nrg2084
doi: 10.1038/nrg2084
|
6 |
FU X J, CUI J J, MENG X J, et al. Endoplasmic reticulum stress, cell death and tumor: association between endoplasmic reticulum stress and the apoptosis pathway in tumors (review) [J]. Oncology Reports, 2021, 45(3): 801-808. DOI: 10.3892/or.2021.7933
doi: 10.3892/or.2021.7933
|
7 |
MARTIN D N, BAEHRECKE E H. Caspases function in autophagic programmed cell death in Drosophila [J]. De-velopment, 2004, 131(2): 275-284. DOI: 10.1242/dev.00933
doi: 10.1242/dev.00933
|
8 |
YANG Z F, KLIONSKY D J. Mammalian autophagy: core molecular machinery and signaling regulation[J]. Current Opinion in Cell Biology, 2010, 22(2): 124-131. DOI: 10.1016/j.ceb.2009.11.014
doi: 10.1016/j.ceb.2009.11.014
|
9 |
CUERVO A M. Autophagy: many paths to the same end[J]. Molecular and Cellular Biochemistry, 2004, 263(1/2): 55-72. DOI: 10.1023/b:mcbi.0000041848.57020.57
doi: 10.1023/b:mcbi.0000041848.57020.57
|
10 |
LALAOUI N, LINDQVIST L M, SANDOW J J, et al. The molecular relationships between apoptosis, autophagy and necroptosis[J]. Seminars in Cell & Developmental Biology, 2015, 39: 63-69. DOI: 10.1016/j.semcdb.2015.02.003
doi: 10.1016/j.semcdb.2015.02.003
|
11 |
DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. DOI: 10.1016/j.cell.2012.03.042
doi: 10.1016/j.cell.2012.03.042
|
12 |
YANG W S, SRIRAMARATNAM R, WELSCH M E, et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156(1/2): 317-331. DOI: 10.1016/j.cell.2013.12.010
doi: 10.1016/j.cell.2013.12.010
|
13 |
BERSUKER K, HENDRICKS J M, LI Z P, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. DOI: 10.1038/s41586-019-1705-2
doi: 10.1038/s41586-019-1705-2
|
14 |
WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661): 99-103. DOI: 10.1038/nature22393
doi: 10.1038/nature22393
|
15 |
SARHAN J, LIU B C, MUENDLEIN H I, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. PNAS, 2018, 115(46): E10888-E10897. DOI: 10.1073/pnas.1809548115
doi: 10.1073/pnas.1809548115
|
16 |
RAVINDRAN M, KHAN M A, PALANIYAR N. Neutrophil extracellular trap formation: physiology, pathology, and pharma-cology[J]. Biomolecules, 2019, 9(8): 365. DOI: 10.3390/biom9080365
doi: 10.3390/biom9080365
|
17 |
YOUSEFI S, SIMON D, STOJKOV D, et al. In vivo evidence for extracellular DNA trap formation[J]. Cell Death & Disease, 2020, 11(4): 300. DOI: 10.1038/s41419-020-2497-x
doi: 10.1038/s41419-020-2497-x
|
18 |
THIAM H R, WONG S L, QIU R, et al. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture[J]. PNAS, 2020, 117(13): 7326-7337. DOI: 10.1073/pnas.1909546117
doi: 10.1073/pnas.1909546117
|
19 |
TSVETKOV P, COY S, PETROVA B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. DOI: 10.1126/science.abf0529
doi: 10.1126/science.abf0529
|
20 |
RIVERA-PÉREZ J A, HADJANTONAKIS A K. The dynamics of morphogenesis in the early mouse embryo[J]. Cold Spring Harbor Perspectives in Biology, 2014, 7(11): a015867. DOI: 10.1101/cshperspect.a015867
doi: 10.1101/cshperspect.a015867
|
21 |
MORRIS S A, TEO R T Y, LI H L, et al. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo[J]. PNAS, 2010, 107(14): 6364-6369. DOI: 10.1073/pnas.0915063107
doi: 10.1073/pnas.0915063107
|
22 |
BEDZHOV I, GRAHAM S J L, LEUNG C Y, et al. Developmental plasticity, cell fate specification and morpho-genesis in the early mouse embryo[J]. Philosophical Tran-sactions of the Royal Society B: Biological Sciences, 2014, 369(1657): 20130538. DOI: 10.1098/rstb.2013.0538
doi: 10.1098/rstb.2013.0538
|
23 |
HE L, YE S Y, FANG J, et al. Real-time visualization of embryonic apoptosis using a near-infrared fluorogenic probe for embryo development evaluation[J]. Analytical Chemistry, 2021, 93(35): 12122-12130. DOI: 10.1021/acs.analchem.1c02793
doi: 10.1021/acs.analchem.1c02793
|
24 |
LIMPACHAYAPORN P, SCHÄFERS M, HAUFE G. Isatin sulfonamides: potent caspases-3 and -7 inhibitors, and promising PET and SPECT radiotracers for apoptosis imaging[J]. Future Medicinal Chemistry, 2015, 7(9): 1173-1196. DOI: 10.4155/fmc.15.52
doi: 10.4155/fmc.15.52
|
25 |
NASU Y, ASAOKA Y, NAMAE M, et al. Genetically encoded fluorescent probe for imaging apoptosis in vivo with spontaneous GFP complementation[J]. Analytical Chemistry, 2016, 88(1): 838-844. DOI: 10.1021/acs.analchem.5b03367
doi: 10.1021/acs.analchem.5b03367
|
26 |
MALUMBRES M, BARBACID M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nature Reviews Cancer, 2009, 9(3): 153-166. DOI: 10.1038/nrc2602
doi: 10.1038/nrc2602
|
27 |
SINGLA S, IWAMOTO-STOHL L K, ZHU M, et al. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism[J]. Nature Com-munications, 2020, 11: 2958. DOI: 10.1038/s41467-020-16796-3
doi: 10.1038/s41467-020-16796-3
|
28 |
YAO R Q, REN C, XIA Z F, et al. Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J]. Autophagy, 2021, 17(2): 385-401. DOI: 10.1080/15548627.2020.1725377
doi: 10.1080/15548627.2020.1725377
|
29 |
MIZUSHIMA N, KOMATSU M. Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147(4): 728-741. DOI: 10.1016/j.cell.2011.10.026
doi: 10.1016/j.cell.2011.10.026
|
30 |
PAMPFER S, DONNAY I. Apoptosis at the time of embryo implantation in mouse and rat[J]. Cell Death and Diffe-rentiation, 1999, 6(6): 533-545. DOI: 10.1038/sj.cdd.4400516
doi: 10.1038/sj.cdd.4400516
|
31 |
ORIETTI L C, ROSA V S, ANTONICA F, et al. Embryo size regulates the timing and mechanism of pluripotent tissue morphogenesis[J]. Stem Cell Reports, 2021, 16(5): 1182-1196. DOI: 10.1016/j.stemcr.2020.09.004
doi: 10.1016/j.stemcr.2020.09.004
|
32 |
CHIFENTI B, LOCCI M T, LAZZERI G, et al. Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy[J]. Clinical and Experimental Reproductive Medi-cine, 2013, 40(1): 33-37. DOI: 10.5653/cerm.2013.40.1.33
doi: 10.5653/cerm.2013.40.1.33
|
33 |
SU Y, ZHANG J J, HE J L, et al. Endometrial autophagy is essential for embryo implantation during early pregnancy[J]. Journal of Molecular Medicine, 2020, 98(4): 555-567. DOI: 10.1007/s00109-019-01849-y
doi: 10.1007/s00109-019-01849-y
|
34 |
KAJIWARA K, BEHARIER O, CHNG C P, et al. Ferroptosis induces membrane blebbing in placental trophoblasts[J]. Journal of Cell Science, 2022, 135(5): jcs255737. DOI: 10.1242/jcs.255737
doi: 10.1242/jcs.255737
|
35 |
BEHARIER O, TYURIN V A, GOFF J P, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury[J]. PNAS, 2020, 117(44): 27319-27328. DOI: 10.1073/pnas.2009201117
doi: 10.1073/pnas.2009201117
|
36 |
AKIEDA Y, OGAMINO S, FURUIE H, et al. Cell compe-tition corrects noisy Wnt morphogen gradients to achieve robust patterning in the zebrafish embryo[J]. Nature Com-munications, 2019, 10: 4710. DOI: 10.1038/s41467-019-12609-4
doi: 10.1038/s41467-019-12609-4
|
37 |
SANCHO M, DI-GREGORIO A, GEORGE N, et al. Competitive interactions eliminate unfit embryonic stem cells at the onset of differentiation[J]. Developmental Cell, 2013, 26(1): 19-30. DOI: 10.1016/j.devcel.2013.06.012
doi: 10.1016/j.devcel.2013.06.012
|
38 |
KIM J Y, CHA Y G, CHO S W, et al. Inhibition of apoptosis in early tooth development alters tooth shape and size[J]. Journal of Dental Research, 2006, 85(6): 530-535. DOI: 10.1177/154405910608500610
doi: 10.1177/154405910608500610
|
39 |
MAKINO K, OMACHI R, SUZUKI H, et al. Apoptosis occurs during early development of the bursa of Fabricius in chicken embryos[J]. Biological & Pharmaceutical Bulletin, 2014, 37(12): 1982-1985. DOI: 10.1248/bpb.b14-00489
doi: 10.1248/bpb.b14-00489
|
40 |
LINDSTEN T, ROSS A J, KING A, et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues[J]. Molecular Cell, 2000, 6(6): 1389-1399. DOI: 10.1016/s1097-2765(00)00136-2
doi: 10.1016/s1097-2765(00)00136-2
|
41 |
KELLY K A, WEI Y, MIKAWA T. Cell death along the embryo midline regulates left-right sidedness[J]. Develop-mental Dynamics, 2002, 224(2): 238-244. DOI: 10.1002/dvdy.10098
doi: 10.1002/dvdy.10098
|
42 |
TOWERS M, TICKLE C. Growing models of vertebrate limb development[J]. Development, 2009, 136(2): 179-190. DOI: 10.1242/dev.024158
doi: 10.1242/dev.024158
|
43 |
HERNÁNDEZ-MARTÍNEZ R, COVARRUBIAS L. Inter-digital cell death function and regulation: new insights on an old programmed cell death model[J]. Development Growth & Differentiation, 2011, 53(2): 245-258. DOI: 10.1111/j.1440-169X.2010.01246.x
doi: 10.1111/j.1440-169X.2010.01246.x
|
44 |
PAJNI-UNDERWOOD S, WILSON C P, ELDER C, et al. BMP signals control limb bud interdigital programmed cell death by regulating FGF signaling[J]. Development, 2007, 134(12): 2359-2368. DOI: 10.1242/dev.001677
doi: 10.1242/dev.001677
|
45 |
YEGANEH B, LEE J, ERMINI L, et al. Autophagy is required for lung development and morphogenesis[J]. Journal of Clinical Investigation, 2019, 129(7): 2904-2919. DOI: 10.1172/JCI127307
doi: 10.1172/JCI127307
|
46 |
LEE E, KOO Y, NG A, et al. Autophagy is essential for cardiac morphogenesis during vertebrate development[J]. Autophagy, 2014, 10(4): 572-587. DOI: 10.4161/auto.27649
doi: 10.4161/auto.27649
|
47 |
TAN P W, REN Y, ZHANG Y C, et al. Dissecting dynamic expression of autophagy-related genes during human fetal digestive tract development via single-cell RNA sequencing[J]. Autophagy, 2019, 15(11): 2019-2021. DOI: 10.1080/1554 8627.2019.1656956
doi: 10.1080/1554
|
48 |
MOUJALLED D, STRASSER A, LIDDELL J R. Molecular mechanisms of cell death in neurological diseases[J]. Cell Death and Differentiation, 2021, 28(7): 2029-2044. DOI: 10.1038/s41418-021-00814-y
doi: 10.1038/s41418-021-00814-y
|
49 |
HOU S L, CHEN J R, YANG J. Autophagy precedes apoptosis during degeneration of the Kölliker’s organ in the development of rat cochlea[J]. European Journal of Histo-chemistry, 2019, 63(2): 3025. DOI: 10.4081/ejh.2019.3025
doi: 10.4081/ejh.2019.3025
|
50 |
NAKAI Y, NAKAJIMA K, YAOITA Y. Mechanisms of tail resorption during anuran metamorphosis[J]. Biomolecular Concepts, 2017, 8(3/4): 179-183. DOI: 10.1515/bmc-2017-0022
doi: 10.1515/bmc-2017-0022
|
51 |
MARUYAMA T, FUJITA Y. Cell competition in vertebrates: a key machinery for tissue homeostasis[J]. Current Opinion in Genetics & Development, 2022, 72: 15-21. DOI: 10.1016/j.gde.2021.09.006
doi: 10.1016/j.gde.2021.09.006
|
52 |
HASHIMOTO M, SASAKI H. Epiblast formation by TEAD-YAP-dependent expression of pluripotency factors and competitive elimination of unspecified cells[J]. Develop-mental Cell, 2019, 50(2): 139-154. DOI: 10.1016/j.devcel.2019.05.024
doi: 10.1016/j.devcel.2019.05.024
|
53 |
FERNANDEZ-ANTORAN D, PIEDRAFITA G, MURAI K, et al. Outcompeting p53-mutant cells in the normal esophagus by redox manipulation[J]. Cell Stem Cell, 2019, 25(3): 329-341. DOI: 10.1016/j.stem.2019.06.011
doi: 10.1016/j.stem.2019.06.011
|
54 |
LI F, HUANG Q, CHEN J, et al. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration[J]. Science Signaling, 2010, 3(110): ra13. DOI: 10.1126/scisignal.2000634
doi: 10.1126/scisignal.2000634
|
55 |
VALON L, DAVIDOVIĆ A, LEVILLAYER F, et al. Robustness of epithelial sealing is an emerging property of local ERK feedback driven by cell elimination[J]. Develop-mental Cell, 2021, 56(12): 1700-1711. DOI: 10.1016/j.devcel.2021.05.006
doi: 10.1016/j.devcel.2021.05.006
|
56 |
PÉREZ-GARIJO A, FUCHS Y, STELLER H. Apoptotic cells can induce non-autonomous apoptosis through the TNF pathway[J]. eLife, 2013, 2: e1004. DOI: 10.7554/eLife.01004
doi: 10.7554/eLife.01004
|
57 |
ROWE I, LE BLAY K, DU PASQUIER D, et al. Apoptosis of tail muscle during amphibian metamorphosis involves a caspase 9-dependent mechanism[J]. Developmental Dynamics, 2005, 233(1): 76-87. DOI: 10.1002/dvdy.20312
doi: 10.1002/dvdy.20312
|
58 |
ANVARIFAR H, AMIRKOLAIE A K, MIANDARE H K, et al. Apoptosis in fish: environmental factors and program-med cell death[J]. Cell and Tissue Research, 2017, 368(3): 425-439. DOI: 10.1007/s00441-016-2548-x
doi: 10.1007/s00441-016-2548-x
|
59 |
SILKE J, VINCE J. IAPs and cell death[J]. Current Topics in Microbiology and Immunology, 2017, 403: 95-117. DOI: 10.1007/82_2016_507
doi: 10.1007/82_2016_507
|
60 |
FUCHS Y, STELLER H. Programmed cell death in animal development and disease[J]. Cell, 2011, 147(4): 742-758. DOI: 10.1016/j.cell.2011.10.033
doi: 10.1016/j.cell.2011.10.033
|
61 |
OHSAWA S, VAUGHEN J, IGAKI T. Cell extrusion: a stress-responsive force for good or evil in epithelial homeostasis[J]. Developmental Cell, 2018, 44(3): 284-296. DOI: 10.1016/j.devcel.2018.01.009
doi: 10.1016/j.devcel.2018.01.009
|
62 |
GU Y P, FOROSTYAN T, SABBADINI R, et al. Epithelial cell extrusion requires the sphingosine-1-phosphate receptor 2 pathway[J]. Journal of Cell Biology, 2011, 193(4): 667-676. DOI: 10.1083/jcb.201010075
doi: 10.1083/jcb.201010075
|
63 |
ETIENNE-MANNEVILLE S, HALL A. Rho GTPases in cell biology[J]. Nature, 2002, 420(6916): 629-635. DOI: 10.1038/nature01148
doi: 10.1038/nature01148
|
64 |
KUIPERS D, MEHONIC A, KAJITA M, et al. Epithelial repair is a two-stage process driven first by dying cells and then by their neighbours[J]. Journal of Cell Science, 2014, 127(Pt 6): 1229-1241. DOI: 10.1242/jcs.138289
doi: 10.1242/jcs.138289
|
65 |
THOMAS M, LADOUX B, TOYAMA Y. Desmosomal junctions govern tissue integrity and actomyosin contractility in apoptotic cell extrusion[J]. Current Biology, 2020, 30(4): 682-690. DOI: 10.1016/j.cub.2020.01.002
doi: 10.1016/j.cub.2020.01.002
|
66 |
TAKEUCHI Y, NARUMI R, AKIYAMA R, et al. Calcium wave promotes cell extrusion[J]. Current Biology, 2020, 30(4): 670-681. DOI: 10.1016/j.cub.2019.11.089
doi: 10.1016/j.cub.2019.11.089
|
67 |
GUDIPATY S A, ROSENBLATT J. Epithelial cell extrusion: pathways and pathologies[J]. Seminars in Cell & Develop-mental Biology, 2017, 67: 132-140. DOI: 10.1016/j.semcdb.2016.05.010
doi: 10.1016/j.semcdb.2016.05.010
|
68 |
NONOMURA K, LUKACS V, SWEET D T, et al. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation[J]. PNAS, 2018, 115(50): 12817-12822. DOI: 10.1073/pnas.1817070115
doi: 10.1073/pnas.1817070115
|
69 |
HOIJMAN E, HÄKKINEN H M, TOLOSA-RAMON Q, et al. Cooperative epithelial phagocytosis enables error correc-tion in the early embryo[J]. Nature, 2021, 590(7847): 618-623. DOI: 10.1038/s41586-021-03200-3
doi: 10.1038/s41586-021-03200-3
|
70 |
ZHU Y L, CROWLEY S C, LATIMER A J, et al. Migratory neural crest cells phagocytose dead cells in the developing nervous system[J]. Cell, 2019, 179(1): 74-89. DOI: 10.1016/j.cell.2019.08.001
doi: 10.1016/j.cell.2019.08.001
|
71 |
ZAGANJOR I, SEKKARIE A, TSANG B L, et al. Describing the prevalence of neural tube defects worldwide: a systematic literature review[J]. PLoS ONE, 2016, 11(4): e151586. DOI: 10.1371/journal.pone.0151586
doi: 10.1371/journal.pone.0151586
|
72 |
MASSA V, SAVERY D, YBOT-GONZALEZ P, et al. Apoptosis is not required for mammalian neural tube closure[J]. PNAS, 2009, 106(20): 8233-8238. DOI: 10.1073/pnas.0900333106
doi: 10.1073/pnas.0900333106
|
73 |
TSUKAMOTO S, KUMA A, MURAKAMI M, et al. Autophagy is essential for preimplantation development of mouse embryos[J]. Science, 2008, 321(5885): 117-120. DOI: 10.1126/science.1154822
doi: 10.1126/science.1154822
|
74 |
CECCONI F, LEVINE B. The role of autophagy in mammalian development: cell makeover rather than cell death[J]. Developmental Cell, 2008, 15(3): 344-357. DOI: 10.1016/j.devcel.2008.08.012
doi: 10.1016/j.devcel.2008.08.012
|
75 |
KANG R, ZENG L, ZHU S, et al. Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis[J]. Cell Host & Microbe, 2018, 24(1): 97-108. DOI: 10.1016/j.chom.2018.05.009
doi: 10.1016/j.chom.2018.05.009
|
76 |
LEONARD J R, KLOCKE B J, D’SA C, et al. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice[J]. Journal of Neuropathology and Experi-mental Neurology, 2002, 61(8): 673-677. DOI: 10.1093/jnen/61.8.673
doi: 10.1093/jnen/61.8.673
|
77 |
GREGG C L, BUTCHER J T. Quantitative in vivo imaging of embryonic development: opportunities and challenges[J]. Differentiation, 2012, 84(1): 149-162. DOI: 10.1016/j.diff.2012.05.003
doi: 10.1016/j.diff.2012.05.003
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|