Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (5): 591-606    DOI: 10.3785/j.issn.1008-9209.2023.05.101
青年科学家论坛     
植物雷帕霉素靶蛋白激酶研究进展
陈文臻1,2(),刘佳琦1,都浩1
1.浙江大学农业与生物技术学院现代种业研究所,浙江 杭州 310058
2.浙江大学海南研究院,海南 三亚 572025
Research progresses on target of rapamycin kinase in plants
Wenzhen CHEN1,2(),Jiaqi LIU1,Hao DU1
1.Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hainan Institute of Zhejiang University, Sanya 572025, Hainan, China
 全文: PDF(1889 KB)   HTML
摘要:

植物雷帕霉素靶蛋白(target of rapamycin, TOR)作为信号和代谢调节中枢,通过磷酸化修饰整合营养、能量和环境信号,感知植物体内能量变化,调节植物生长发育和环境适应过程。在本文中,我们回顾了TOR的发现历程,总结了以往和近期植物TOR的信号通路研究进展(包括新发现的部分上游效应因子和下游调控路径),TOR在植物胚胎发生、分生组织形成、养分利用、开花和衰老等不同生长发育阶段或代谢过程中的重要作用,以及响应非生物胁迫和生物胁迫的生物学机制,还展望了TOR激酶在未来的研究热点方向及其在农业生产中的应用。

关键词: 雷帕霉素靶蛋白蛋白激酶信号通路生长发育环境适应    
Abstract:

In plants, target of rapamycin (TOR) functions as a pivotal signaling and metabolic hub, integrating nutrient availability, energy status, and environmental cues through phosphorylation. This regulatory mechanism plays a crucial role in governing plant growth, development, and environmental adaptation. In this paper, we provide a comprehensive review of the discovery and characterization of TOR in plants. We summarize previous and recent studies on the signaling pathway of plant TOR, highlighting the identification of upstream effect factors and downstream substrates. Additionally, we discuss the diverse roles of TOR in plant embryogenesis, meristem formation, nutrient utilization, flowering, senescence, and responses to both abiotic and biotic stresses. Furthermore, we explore the potential research prospects for TOR kinase and its application in agriculture.

Key words: target of rapamycin    protein kinase    signaling pathway    growth and development    environmental adaptation
收稿日期: 2023-05-10 出版日期: 2023-11-03
CLC:  S-3  
基金资助: 海南省自然科学基金联合项目(320LH031);浙江省自然科学基金项目(LY21C020003);中央高校基本科研业务费专项资金项目(K20200168)
通讯作者: 都浩     E-mail: 1870357504@qq.com
作者简介: 陈文臻(https://orcid.org/0009-0002-0242-9508),E-mail:1870357504@qq.com|都浩,博士,浙江大学农业与生物技术学院研究员,博士生导师。2003—2013 年在华中农业大学生命科学技术学院先后获得理学学士学位、生物化学与分子生物学博士学位,其间主要从事水稻发育与逆境生物学研究。2015—2019 年在哈佛大学从事拟南芥能量调控机制和系统生物学研究。2019 年底加入浙江大学农业与生物技术学院现代种业研究所,主要从事植物合成生物技术平台构建、作物能量调控与碳氮平衡机制方面的研究。至今,在Nature、MolecularPlant、Plant Biotechnology Journal、New Phytologist、The Plant Journal、Plant Physiology、Journalof Integrative Plant Biology、Journal of Experimental Botany、Theoretical and Applied Genetics 等国际主流期刊上发表研究论文28 篇。获得国家授权发明专利4 项。发表的论文总被引3 000 多次,h 指数18。(https://orcid.org/0000-0003-2248-0271),E-mail:du_hao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈文臻
刘佳琦
都浩

引用本文:

陈文臻,刘佳琦,都浩. 植物雷帕霉素靶蛋白激酶研究进展[J]. 浙江大学学报(农业与生命科学版), 2023, 49(5): 591-606.

Wenzhen CHEN,Jiaqi LIU,Hao DU. Research progresses on target of rapamycin kinase in plants. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(5): 591-606.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.05.101        https://www.zjujournals.com/agr/CN/Y2023/V49/I5/591

图1  动植物TOR激酶及其复合体亚基结构实线箭头代表蛋白结合位置,T形箭头代表抑制作用。
图2  TOR在植物发育中的核心调控作用
图3  植物中TOR调控网络示意图实线箭头代表直接激活作用,虚线箭头代表间接激活作用,T形箭头代表抑制作用。
1 VÉZINA C, KUDELSKI A, SEHGAL S N. Rapamycin (AY-22,989), a new antifungal antibiotic.Ⅰ. Taxonomy of the producing streptomycete and isolation of the active principle[J]. The Journal of Antibiotics, 1975, 28(10): 721-726. DOI: 10.7164/antibiotics.28.721
doi: 10.7164/antibiotics.28.721
2 DUMONT F J, STARUCH M J, KOPRAK S L, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin[J]. Journal of Immunology, 1990, 144(1): 251-258.
3 HEITMAN J, MOVVA N R, HALL M N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast[J]. Science, 1991, 253(5022): 905-909. DOI: 10.1126/science.1715094
doi: 10.1126/science.1715094
4 LIU Y L, XIONG Y. Plant target of rapamycin signaling network: complexes, conservations, and specificities[J]. Journal of Integrative Plant Biology, 2022, 64(2): 342-370. DOI: 10.1111/jipb.13212
doi: 10.1111/jipb.13212
5 BRUNKARD J O. Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes[J]. Developmental Cell, 2020, 54(2): 142-155. DOI: 10.1016/j.devcel.2020.06.022
doi: 10.1016/j.devcel.2020.06.022
6 SHI L, WU Y, SHEEN J. TOR signaling in plants: conservation and innovation[J]. Development, 2018, 145(13): dev160887. DOI: 10.1242/dev.160887
doi: 10.1242/dev.160887
7 PEREYRA C M, AZNAR N R, RODRIGUEZ M S, et al. Target of rapamycin signaling is tightly and differently regulated in the plant response under distinct abiotic stresses[J]. Planta, 2019, 251(1): 21. DOI: 10.1007/s00425-019-03305-0
doi: 10.1007/s00425-019-03305-0
8 DE VLEESSCHAUWER D, FILIPE O, HOFFMAN G, et al. Target of rapamycin signaling orchestrates growth-defense trade-offs in plants[J]. New Phytologist, 2018, 217(1): 305-319. DOI: 10.1111/nph.14785
doi: 10.1111/nph.14785
9 ZHU T T, LI L X, FENG L, et al. Target of rapamycin regulates genome methylation reprogramming to control plant growth in Arabidopsis [J]. Frontiers in Genetics, 2020, 11: 186. DOI: 10.3389/fgene.2020.00186
doi: 10.3389/fgene.2020.00186
10 SMAILOV B, ALYBAYEV S, SMEKENOV I, et al. Wheat germination is dependent on plant target of rapamycin signaling[J]. Frontiers in Cell and Developmental Biology, 2020, 8: 606685. DOI: 10.3389/fcell.2020.606685
doi: 10.3389/fcell.2020.606685
11 SZWED A, KIM E, JACINTO E. Regulation and metabolic functions of mTORC1 and mTORC2[J]. Physiological Reviews, 2021, 101(3): 1371-1426. DOI: 10.1152/physrev.00026.2020
doi: 10.1152/physrev.00026.2020
12 YANG H R, WANG J, LIU M J, et al. 4.4 Å resolution cryo-EM structure of human mTOR complex 1[J]. Protein & Cell, 2016, 7(12): 878-887. DOI: 10.1007/s13238-016-0346-6
doi: 10.1007/s13238-016-0346-6
13 REHBEIN U, PRENTZELL M T, SANDOVAL M C, et al. The TSC complex-mTORC1 axis: from lysosomes to stress granules and back[J]. Frontiers in Cell and Developmental Biology, 2021, 9: 751892. DOI: 10.3389/fcell.2021.751892
doi: 10.3389/fcell.2021.751892
14 HOXHAJ G, HUGHES-HALLETT J, TIMSON R C, et al. The mTORC1 signaling network senses changes in cellular purine nucleotide levels[J]. Cell Reports, 2017, 21(5): 1331-1346. DOI: 10.1016/j.celrep.2017.10.029
doi: 10.1016/j.celrep.2017.10.029
15 SHAW R J. LKB1 and AMP-activated protein kinase control of mTOR signalling and growth[J]. Acta Physiologica, 2009, 196(1): 65-80. DOI: 10.1111/j.1748-1716.2009.01972.x
doi: 10.1111/j.1748-1716.2009.01972.x
16 EFEYAN A, ZONCU R, CHANG S, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival[J]. Nature, 2013, 493(7434): 679-683. DOI: 10.1038/nature11745
doi: 10.1038/nature11745
17 CHUN Y, KIM J. AMPK-mTOR signaling and cellular adaptations in hypoxia[J]. International Journal of Molecular Sciences, 2021, 22(18): 9765. DOI: 10.3390/ijms22189765
doi: 10.3390/ijms22189765
18 KIM J, GUAN K L. mTOR as a central hub of nutrient signalling and cell growth[J]. Nature Cell Biology, 2019, 21(1): 63-71. DOI: 10.1038/s41556-018-0205-1
doi: 10.1038/s41556-018-0205-1
19 SHEN K, CHOE A, SABATINI D M. Intersubunit crosstalk in the Rag GTPase heterodimer enables mTORC1 to respond rapidly to amino acid availability[J]. Molecular Cell, 2017, 68(4): 821. DOI: 10.1016/j.molcel.2017.10.031
doi: 10.1016/j.molcel.2017.10.031
20 INGARGIOLA C, DUARTE G T, ROBAGLIA C, et al. The plant target of rapamycin: a Conduc TOR of nutrition and metabolism in photosynthetic organisms[J]. Genes, 2020, 11(11): 1285. DOI: 10.3390/genes11111285
doi: 10.3390/genes11111285
21 MAHFOUZ M M, KIM S H, DELAUNEY A J, et al. Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals[J]. The Plant Cell, 2006, 18(2): 477-490. DOI: 10.1105/tpc.105.035931
doi: 10.1105/tpc.105.035931
22 MOREAU M, AZZOPARDI M, CLÉMENT G, et al. Mutations in the Arabidopsis homolog of LST8/GβL, a partner of the target of rapamycin kinase, impair plant growth, flowering, and metabolic adaptation to long days[J]. The Plant Cell, 2012, 24(2): 463-481. DOI: 10.1105/tpc.111.091306
doi: 10.1105/tpc.111.091306
23 MENAND B, DESNOS T, NUSSAUME L, et al. Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene[J]. PNAS, 2002, 99(9): 6422-6427. DOI: 10.1073/pnas.092141899
doi: 10.1073/pnas.092141899
24 DEPROST D, TRUONG H N, ROBAGLIA C, et al. An Arabidopsis homolog of RAPTOR/KOG1 is essential for early embryo development[J]. Biochemical and Biophysical Research Communications, 2005, 326(4): 844-850. DOI: 10.1016/j.bbrc.2004.11.117
doi: 10.1016/j.bbrc.2004.11.117
25 ANDERSON G H, VEIT B, HANSON M R. The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth[J]. BMC Biology, 2005, 3: 12. DOI: 10.1186/1741-7007-3-12
doi: 10.1186/1741-7007-3-12
26 OSHIRO N, YOSHINO K, HIDAYAT S, et al. Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function[J]. Genes to Cells, 2004, 9(4): 359-366. DOI: 10.1111/j.1356-9597.2004.00727.x
doi: 10.1111/j.1356-9597.2004.00727.x
27 MONTANÉ M H, MENAND B. ATP-competitive mTOR kinase inhibitors delay plant growth by triggering early differentiation of meristematic cells but no developmental patterning change[J]. Journal of Experimental Botany, 2013, 64(14): 4361-4374. DOI: 10.1093/jxb/ert242
doi: 10.1093/jxb/ert242
28 XIONG Y, MCCORMACK M, LI L, et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems[J]. Nature, 2013, 496(7444): 181-186. DOI: 10.1038/nature12030
doi: 10.1038/nature12030
29 QUILICHINI T D, GAO P, PANDEY P K, et al. A role for TOR signaling at every stage of plant life[J]. Journal of Experimental Botany, 2019, 70(8): 2285-2296. DOI: 10.1093/jxb/erz125
doi: 10.1093/jxb/erz125
30 LI L, SHEEN J. Dynamic and diverse sugar signaling[J]. Current Opinion in Plant Biology, 2016, 33: 116-125. DOI: 10.1016/j.pbi.2016.06.018
doi: 10.1016/j.pbi.2016.06.018
31 XIONG Y, SHEEN J. Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants[J]. The Journal of Biological Chemistry, 2012, 287(4): 2836-2842. DOI: 10.1074/jbc.M111.300749
doi: 10.1074/jbc.M111.300749
32 FU L W, LIU Y L, QIN G C, et al. The TOR-EIN2 axis mediates nuclear signalling to modulate plant growth[J]. Nature, 2021, 591(7849): 288-292. DOI: 10.1038/s41586-021-03310-y
doi: 10.1038/s41586-021-03310-y
33 NUKARINEN E, NÄGELE T, PEDROTTI L, et al. Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation[J]. Scientific Reports, 2016, 6: 31697. DOI: 10.1038/srep31697
doi: 10.1038/srep31697
34 JAMSHEER K M, JINDAL S, SHARMA M, et al. A negative feedback loop of TOR signaling balances growth and stress-response trade-offs in plants[J]. Cell Reports, 2022, 39(1): 110631. DOI: 10.1016/j.celrep.2022.110631
doi: 10.1016/j.celrep.2022.110631
35 SCHEPETILNIKOV M, MAKARIAN J, SROUR O, et al. GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin[J]. The EMBO Journal, 2017, 36(7): 886-903. DOI: 10.15252/embj.201694816
doi: 10.15252/embj.201694816
36 LIU Y L, DUAN X L, ZHAO X D, et al. Diverse nitrogen signals activate convergent ROP2-TOR signaling in Arabi-dopsis [J]. Developmenal Cell, 2021, 56(9): 1283-1295. DOI: 10.1016/j.devcel.2021.03.022
doi: 10.1016/j.devcel.2021.03.022
37 CAO P F, KIM S J, XING A Q, et al. Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis [J]. eLife, 2019, 8: e50747. DOI: 10.7554/eLife.50747
doi: 10.7554/eLife.50747
38 ZHU S R, FU Q, XU F, et al. New paradigms in cell adaptation: decades of discoveries on the CrRLK1L receptor kinase signalling network[J]. New Phytologist, 2021, 232(3): 1168-1183. DOI: 10.1111/nph.17683
doi: 10.1111/nph.17683
39 SONG L M, XU G Y, LI T T, et al. The RALF1-FERONIA complex interacts with and activates TOR signaling in response to low nutrients[J]. Molecular Plant, 2022, 15(7): 1120-1136. DOI: 10.1016/j.molp.2022.05.004
doi: 10.1016/j.molp.2022.05.004
40 PACHECO J M, SONG L M, KUBĚNOVÁ L, et al. Cell surface receptor kinase FERONIA linked to nutrient sensor TORC signaling controls root hair growth at low temperature linked to low nitrate in Arabidopsis thaliana [J]. New Phyto-logist, 2023, 238(1): 169-185. DOI: 10.1111/nph.18723
doi: 10.1111/nph.18723
41 YU Y D, ZHONG Z C, MA L Y, et al. Sulfate-TOR signaling controls transcriptional reprogramming for shoot apex activation[J]. New Phytologist, 2022, 236(4): 1326-1338. DOI: 10.1111/nph.18441
doi: 10.1111/nph.18441
42 COUSO I, PÉREZ-PÉREZ M E, FORD M M, et al. Phosphorus availability regulates TORC1 signaling via LST8 in chlamydomonas[J]. The Plant Cell, 2020, 32(1): 69-80. DOI: 10.1105/tpc.19.00179
doi: 10.1105/tpc.19.00179
43 GOTOR C, LAUREANO-MARÍN A M, MORENO I, et al. Signaling in the plant cytosol: cysteine or sulfide?[J]. Amino Acids, 2015, 47(10): 2155-2164. DOI: 10.1007/s00726-014-1786-z
doi: 10.1007/s00726-014-1786-z
44 CHO H, BANF M, SHAHZAD Z, et al. ARSK1 activates TORC1 signaling to adjust growth to phosphate availability in Arabidopsis [J]. Current Biology, 2023, 33(9): 1778-1786. DOI: 10.1016/j.cub.2023.03.005
doi: 10.1016/j.cub.2023.03.005
45 LIAO C Y, PU Y T, NOLAN T M, et al. Brassinosteroids modulate autophagy through phosphorylation of RAPTOR1B by the GSK3-like kinase BIN2 in Arabidopsis [J]. Autophagy, 2023, 19(4): 1293-1310. DOI: 10.1080/15548627.2022.2124501
doi: 10.1080/15548627.2022.2124501
46 WANG P C, ZHAO Y, LI Z P, et al. Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response[J]. Molecular Cell, 2018, 69(1): 100-112. DOI: 10.1016/j.molcel.2017.12.002
doi: 10.1016/j.molcel.2017.12.002
47 BELDA-PALAZÓN B, ADAMO M, VALERIO C, et al. A dual function of SnRK2 kinases in the regulation of SnRK1 and plant growth[J]. Nature Plants, 2020, 6(11): 1345-1353. DOI: 10.1038/s41477-020-00778-w
doi: 10.1038/s41477-020-00778-w
48 SCHEPETILNIKOV M, KOBAYASHI K, GELDREICH A, et al. Viral factor TAV recruits TOR/S6K1 signalling to activate reinitiation after long ORF translation[J]. The EMBO Journal, 2011, 30(7): 1343-1356. DOI: 10.1038/emboj.2011.39
doi: 10.1038/emboj.2011.39
49 REN M Z, QIU S Q, VENGLAT P, et al. Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis [J]. Plant Physiology, 2011, 155(3): 1367-1382. DOI: 10.1104/pp.110.169045
doi: 10.1104/pp.110.169045
50 GUERTIN D A, STEVENS D M, THOREEN C C, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCα, but not S6K1[J]. Developmental Cell, 2006, 11(6): 859-871. DOI: 10.1016/j.devcel.2006.10.007
doi: 10.1016/j.devcel.2006.10.007
51 SALEM M A, LI Y, WISZNIEWSKI A, et al. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential[J]. The Plant Journal, 2017, 92(4): 525-545. DOI: 10.1111/tpj.13667
doi: 10.1111/tpj.13667
52 AHN C S, AHN H K, PAI H S. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway[J]. Journal of Experimental Botany, 2015, 66(3): 827-840. DOI: 10.1093/jxb/eru438
doi: 10.1093/jxb/eru438
53 ZHUO F P, XIONG F J, DENG K X, et al. Target of rapamycin (TOR) negatively regulates ethylene signals in Arabidopsis [J]. International Journal of Molecular Sciences, 2020, 21(8): 2680. DOI: 10.3390/ijms21082680
doi: 10.3390/ijms21082680
54 MEYUHAS O. Ribosomal protein S6 phosphorylation: four decades of research[J]. International Review of Cell and Molecular Biology, 2015, 320: 41-73. DOI: 10.1016/bs.ircmb.2015.07.006
doi: 10.1016/bs.ircmb.2015.07.006
55 CHEN G H, LIU M J, XIONG Y, et al. TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings[J]. PNAS, 2018, 115(50): 12823-12828. DOI: 10.1073/pnas.1809526115
doi: 10.1073/pnas.1809526115
56 LI L X, SONG Y, WANG K, et al. TOR-inhibitor insensitive-1 (TRIN1) regulates cotyledons greening in Arabidopsis [J]. Frontiers in Plant Science, 2015, 6: 861. DOI: 10.3389/fpls.2015.00861
doi: 10.3389/fpls.2015.00861
57 XIONG F J, ZHANG R, MENG Z G, et al. Brassinosteriod insensitive 2 (BIN2) acts as a downstream effector of the target of rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis [J]. New Phytologist, 2017, 213(1): 233-249. DOI: 10.1111/nph.14118
doi: 10.1111/nph.14118
58 SUN L X, YU Y H, HU W Q, et al. Ribosomal protein S6 kinase 1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice[J]. Biochimica et Biophysica Acta, 2016, 1861(7): 639-649. DOI: 10.1016/j.bbalip.2016.04.009
doi: 10.1016/j.bbalip.2016.04.009
59 BARRADA A, DJENDLI M, DESNOS T, et al. A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis [J]. Development, 2019, 146(3): dev171298. DOI: 10.1242/dev.171298
doi: 10.1242/dev.171298
60 ZHANG N, MENG Y Y, LI X, et al. Metabolite-mediated TOR signaling regulates the circadian clock in Arabidopsis [J]. PNAS, 2019, 116(51): 25395-25397. DOI: 10.1073/pnas.1913095116
doi: 10.1073/pnas.1913095116
61 STITZ M, KUSTER D, REINERT M, et al. TOR acts as a metabolic gatekeeper for auxin-dependent lateral root initiation in Arabidopsis thaliana [J]. The EMBO Journal, 2023, 42(10): e111273. DOI: 10.15252/embj.2022111273
doi: 10.15252/embj.2022111273
62 YUAN X B, XU P, YU Y D, et al. Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root[J]. PNAS, 2020, 117(51): 32223-32225. DOI: 10.1073/pnas.2015400117
doi: 10.1073/pnas.2015400117
63 ZHANG H, GUO L, LI Y P, et al. TOP1α fine-tunes TOR-PLT2 to maintain root tip homeostasis in response to sugars[J]. Nature Plants, 2022, 8(7): 792-801. DOI: 10.1038/s41477-022-01179-x
doi: 10.1038/s41477-022-01179-x
64 DEPROST D, YAO L, SORMANI R, et al. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation[J]. EMBO Reports, 2007, 8(9): 864-870. DOI: 10.1038/sj.embor.7401043
doi: 10.1038/sj.embor.7401043
65 BRUNKARD J O, XU M, SCARPIN M R, et al. TOR dynamically regulates plant cell-cell transport[J]. PNAS, 2020, 117(9): 5049-5058. DOI: 10.1073/pnas.1919196117
doi: 10.1073/pnas.1919196117
66 YE R Q, WANG M Y, DU H, et al. Glucose-driven TOR-FIE-PRC2 signalling controls plant development[J]. Nature, 2022, 609(7929): 986-993. DOI: 10.1038/s41586-022-05171-5
doi: 10.1038/s41586-022-05171-5
67 XIONG F J, TIAN J W, WEI Z Z, et al. Suppression of the target of rapamycin kinase accelerates tomato fruit ripening through reprogramming the transcription profile and promoting ethylene biosynthesis[J]. Journal of Experimental Botany, 2023, 74(8): 2603-2619. DOI: 10.1093/jxb/erad056
doi: 10.1093/jxb/erad056
68 BJEDOV I, RALLIS C. The target of rapamycin signalling pathway in ageing and lifespan regulation[J]. Genes, 2020, 11(9): 1043. DOI: 10.3390/genes11091043
doi: 10.3390/genes11091043
69 REN M Z, VENGLAT P, QIU S Q, et al. Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis [J]. The Plant Cell, 2012, 24(12): 4850-4874. DOI: 10.1105/tpc.112.107144
doi: 10.1105/tpc.112.107144
70 KIM J H, WOO H R, KIM J, et al. Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis [J]. Science, 2009, 323(5917): 1053-1057. DOI: 10.1126/science.1166386
doi: 10.1126/science.1166386
71 GAO S, GAO J, ZHU X Y, et al. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis [J]. Molecular Plant, 2016, 9(9): 1272-1285. DOI: 10.1016/j.molp.2016.06.006
doi: 10.1016/j.molp.2016.06.006
72 KIM G D, CHO Y H, YOO S D. Regulatory functions of cellular energy sensor SNF1-related kinase 1 for leaf senescence delay through ETHYLENE-INSENSITIVE 3 repression[J]. Scientific Reports, 2017, 7(1): 3193. DOI: 10.1038/s41598-017-03506-1
doi: 10.1038/s41598-017-03506-1
73 ESCOBAR K A, COLE N H, MERMIER C M, et al. Autophagy and aging: maintaining the proteome through exercise and caloric restriction[J]. Aging Cell, 2019, 18(1): e12876. DOI: 10.1111/acel.12876
doi: 10.1111/acel.12876
74 SON O, KIM S, KIM D, et al. Involvement of TOR signaling motif in the regulation of plant autophagy[J]. Biochemical and Biophysical Research Communications, 2018, 501(3): 643-647. DOI: 10.1016/j.bbrc.2018.05.027
doi: 10.1016/j.bbrc.2018.05.027
75 PU Y T, LUO X J, BASSHAM D C. TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana [J]. Frontiers in Plant Science, 2017, 8: 1204. DOI: 10.3389/fpls.2017.01204
doi: 10.3389/fpls.2017.01204
76 WEN B B, XIAO W, MU Q, et al. How does nitrate regulate plant senescence?[J]. Plant Physiology and Biochemistry, 2020, 157: 60-69. DOI: 10.1016/j.plaphy.2020.08.041
doi: 10.1016/j.plaphy.2020.08.041
77 LI D Y, DING Y D, CHENG L, et al. Target of rapamycin (TOR) regulates the response to low nitrogen stress via autophagy and hormone pathways in Malus hupehensis [J]. Horticulture Research, 2022, 9: uhac143. DOI: 10.1093/hr/uhac143
doi: 10.1093/hr/uhac143
78 SONG Y, ZHAO G, ZHANG X Y, et al. The crosstalk between target of rapamycin (TOR) and jasmonic acid (JA) signaling existing in Arabidopsis and cotton[J]. Scientific Reports, 2017, 7: 45830. DOI: 10.1038/srep45830
doi: 10.1038/srep45830
79 DONG Y H, AREF R, FORIERI I, et al. The plant TOR kinase tunes autophagy and meristem activity for nutrient stress-induced developmental plasticity[J]. The Plant Cell, 2022, 34(10): 3814-3829. DOI: 10.1093/plcell/koac201
doi: 10.1093/plcell/koac201
80 MARGALHA L, CONFRARIA A, BAENA-GONZÁLEZ E. SnRK1 and TOR: modulating growth-defense trade-offs in plant stress responses[J]. Journal of Experimental Botany, 2019, 70(8): 2261-2274. DOI: 10.1093/jxb/erz066
doi: 10.1093/jxb/erz066
81 DAI L F, WANG B J, WANG T, et al. The TOR complex controls ATP levels to regulate actin cytoskeleton dynamics in Arabidopsis [J]. PNAS, 2022, 119(38): e2122969119. DOI: 10.1073/pnas.2122969119
doi: 10.1073/pnas.2122969119
82 KRAVCHENKO A, CITERNE S, JÉHANNO I, et al. Mutations in the Arabidopsis Lst8 and Raptor genes encoding partners of the TOR complex, or inhibition of TOR activity decrease abscisic acid (ABA) synthesis[J]. Biochemical and Biophysical Research Communications, 2015, 467(4): 992-997. DOI: 10.1016/j.bbrc.2015.10.028
doi: 10.1016/j.bbrc.2015.10.028
83 BAKSHI A, MOIN M, MADHAV M S, et al. Target of Rapamycin (TOR) negatively regulates chlorophyll degradation and lipid peroxidation and controls responses under abiotic stress in Arabidopsis thaliana [J]. Plant Stress, 2021, 2: 100020. DOI: 10.1016/j.stress.2021.100020
doi: 10.1016/j.stress.2021.100020
84 KUNKOWSKA A B, FONTANA F, BETTI F, et al. Target of rapamycin signaling couples energy to oxygen sensing to modulate hypoxic gene expression in Arabidopsis [J]. PNAS, 2023, 120(3): e2082493176. DOI: 10.1073/pnas.2212474120
doi: 10.1073/pnas.2212474120
85 CHO H Y, LU M Y J, SHIH M C. The SnRK1-eIFiso4G1 signaling relay regulates the translation of specific mRNAs in Arabidopsis under submergence[J]. New Phytologist, 2019, 222(1): 366-381. DOI: 10.1111/nph.15589
doi: 10.1111/nph.15589
86 SCARPIN M R, LEIBOFF S, BRUNKARD J O. Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation[J]. eLife, 2020, 9: e58795. DOI: 10.7554/eLife.58795
doi: 10.7554/eLife.58795
87 MERRET R, DESCOMBIN J, JUAN Y T, et al. XRN4 and LARP1 are required for a heat-triggered mRNA decay pathway involved in plant acclimation and survival during thermal stress[J]. Cell Reports, 2013, 5(5): 1279-1293. DOI: 10.1016/j.celrep.2013.11.019
doi: 10.1016/j.celrep.2013.11.019
88 SHARMA M, BANDAY Z Z, SHUKLA B N, et al. Glucose-regulated HLP1 acts as a key molecule in governing thermo-memory[J]. Plant Physiology, 2019, 180(2): 1081-1100. DOI: 10.1104/pp.18.01371
doi: 10.1104/pp.18.01371
89 SHARMA M, SHARMA M, JAMSHEER K M, et al. A glucose-target of rapamycin signaling axis integrates environ-mental history of heat stress through maintenance of transcription-associated epigenetic memory in Arabidopsis [J]. Journal of Experimental Botany, 2022, 73(20): 7083-7102. DOI: 10.1093/jxb/erac338
doi: 10.1093/jxb/erac338
90 SONG Y, LI L X, YANG Z E, et al. Target of rapamycin (TOR) regulates the expression of lncRNAs in response to abiotic stresses in cotton[J]. Frontiers in Genetics, 2018, 9: 690. DOI: 10.3389/fgene.2018.00690
doi: 10.3389/fgene.2018.00690
91 HUOT B, YAO J, MONTGOMERY B L, et al. Growth-defense tradeoffs in plants: a balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267-1287. DOI: 10.1093/mp/ssu049
doi: 10.1093/mp/ssu049
92 AHN C S, LEE D H, PAI H S. Characterization of Maf1 in Arabidopsis: function under stress conditions and regulation by the TOR signaling pathway[J]. Planta, 2019, 249(2): 527-542. DOI: 10.1007/s00425-018-3024-5
doi: 10.1007/s00425-018-3024-5
93 SOPRANO A S, ABE V Y, SMETANA J H C, et al. Citrus MAF1, a repressor of RNA polymerase Ⅲ, binds the Xantho-monas citri canker elicitor PthA4 and suppresses citrus canker development[J]. Plant Physiology, 2013, 163(1): 232-242. DOI: 10.1104/pp.113.224642
doi: 10.1104/pp.113.224642
94 BLAYNEY J, GEARY J, CHRISP R, et al. Impact on Arabidopsis growth and stress resistance of depleting the Maf1 repressor of RNA polymerase Ⅲ[J]. Gene, 2022, 815: 146130. DOI: 10.1016/j.gene.2021.146130
doi: 10.1016/j.gene.2021.146130
95 METEIGNIER L V, OIRDI M EL, COHEN M, et al. Trans-latome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis [J]. Journal of Experimental Botany, 2017, 68(9): 2333-2344. DOI: 10.1093/jxb/erx078
doi: 10.1093/jxb/erx078
96 OUIBRAHIM L, RUBIO A G, MORETTI A, et al. Poty-viruses differ in their requirement for TOR signalling[J]. The Journal of General Virology, 2015, 96(9): 2898-2903. DOI: 10.1099/vir.0.000186
doi: 10.1099/vir.0.000186
97 AZNAR N R, CONSOLO V F, SALERNO G L, et al. TOR signaling downregulation increases resistance to the cereal killer Fusarium graminearum [J]. Plant Signaling & Behavior, 2018, 13(2): e1414120. DOI: 10.1080/15592324.2017.1414120
doi: 10.1080/15592324.2017.1414120
98 AHMED M R, DU Z Y. Molecular interaction of nonsense-mediated mRNA decay with viruses[J]. Viruses, 2023, 15(4): 816. DOI: 10.3390/v15040816
doi: 10.3390/v15040816
99 TANG J, WU D S, LI X X, et al. Plant immunity suppression via PHR1-RALF-FERONIA shapes the root microbiome to alleviate phosphate starvation[J]. The EMBO Journal, 2022, 41(6): e109102. DOI: 10.15252/embj.2021109102
doi: 10.15252/embj.2021109102
100 GAO X Q, CHEN X, LIN W W, et al. Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases[J]. PLoS Pathogens, 2013, 9(1): e1003127. DOI: 10.1371/journal.ppat.1003127
doi: 10.1371/journal.ppat.1003127
101 ALVES H L S, MATIOLLI C C, SOARES R C, et al. Carbon/nitrogen metabolism and stress response networks: calcium-dependent protein kinases as the missing link?[J]. Journal of Experimental Botany, 2021, 72(12): 4190-4201. DOI: 10.1093/jxb/erab136
doi: 10.1093/jxb/erab136
102 FLAVELL R B. A framework for improving wheat spike development and yield based on the master regulatory TOR and SnRK gene systems[J]. Journal of Experimental Botany, 2023, 74(3): 755-768. DOI: 10.1093/jxb/erac469
doi: 10.1093/jxb/erac469
103 BAKSHI A, MOIN M, KUMAR M U, et al. Ectopic expression of Arabidopsis target of rapamycin (AtTOR) improves water-use efficiency and yield potential in rice[J]. Scientific Reports, 2017, 7: 42835. DOI: 10.1038/srep42835
doi: 10.1038/srep42835
104 DUAN Q H, KITA D, LI C, et al. FERONIA receptor-like kinase regulates RHO GTPase signaling of root hair develop-ment[J]. PNAS, 2010, 107(41): 17821-17826. DOI: 10.1073/pnas.1005366107
doi: 10.1073/pnas.1005366107
105 WANG P, CLARK N M, NOLAN T M, et al. FERONIA functions through target of rapamycin (TOR) to negatively regulate autophagy[J]. Frontiers in Plant Science, 2022, 13: 961096. DOI: 10.3389/fpls.2022.961096
doi: 10.3389/fpls.2022.961096
106 CHEN J, YU F, LIU Y, et al. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis [J]. PNAS, 2016, 113(37): E5519-E5527. DOI: 10.1073/pnas.1608449113
doi: 10.1073/pnas.1608449113
[1] 徐连彬,任怡飞,兰伟,侯鹏飞,刘红云. 雷帕霉素缓解奶牛乳腺上皮细胞炎症反应的作用机制[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 240-246.
[2] 吴杨,姚小华,何正盛,王春娥,周会汶,叶思诚,宋英培,王璠,张弦,高银祥. 光对油茶光合作用及生长发育影响的研究进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(2): 147-157.
[3] 陈耘蕊,毛志君,李兆伟,范凯. 植物蛋白磷酸酶2C结构和功能的研究现状与进展[J]. 浙江大学学报(农业与生命科学版), 2021, 47(1): 11-20.
[4] 陈莲芙,任苧,陈益,屠幼英. 茶树花皂苷对卵巢癌干细胞样细胞增殖的影响及机制[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 667-676.
[5] 王涵, 赵盼盼, 张坤. 哺乳动物着床前胚胎中细胞系的分化及调控机制[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 125-130.
[6] 关小燕, 陈丽妃, 何艳军, 王洁, 卢钢*. 番茄SlMAPK7基因的亚细胞定位与组织表达特性[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 598-604.
[7] 吕琳慧1, 徐幼平2, 任至玄1, 康冬1, 王继鹏1, 蔡新忠1*. Ca2+信号通路对本氏烟叶位介导的核盘菌抗性的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(6): 605-610.
[8] 李阳1, 赵媛1, 徐幼平2, 王继鹏1, 蔡新忠1*. 草酸对植物体内Ca2+浓度及信号传导途径的影响[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 141-145.
[9] 卞莹莹1,2, 宋乃平2*. 农牧交错带不同生计方式农户对生态环境的感知和适应 ——以宁夏盐池县皖记沟村为例[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 210-222.
[10] 孔福苓;王洁;程琳;关小燕;何艳军;卢钢. 番茄SlMAPK12基因的分离及表达特征分析[J]. 浙江大学学报(农业与生命科学版), 2012, 38(5): 551-558.
[11] 任琰  谌江华  黄俊浩  郑重  宋凤鸣. 水稻MAPK基因OsMPK4的克隆鉴定、蛋白表达和转基因载体构建[J]. 浙江大学学报(农业与生命科学版), 2006, 32(6): 613-620.
[12] 吴国星  叶恭银  胡萃  程家安 . 重金属镉对棕尾别麻蝇亲代及子代生长发育与繁殖的影响[J]. 浙江大学学报(农业与生命科学版), 2006, 32(1): 71-76.
[13] 朱光辉  叶恭银  胡萃. 巨尾阿丽蝇幼期血淋巴可溶性蛋白组成的时间特征[J]. 浙江大学学报(农业与生命科学版), 2004, 30(1): 69-72.
[14] 时连根  周金钱. 塑料薄膜覆盖对壮蚕生长发育的影响[J]. 浙江大学学报(农业与生命科学版), 2001, 27(2): 221-224.
[15] 吴旧生  朱有法  沈元新  刘月环. 绍鸭腺胃蛙皮素细胞生长发育的免疫组织化学观测[J]. 浙江大学学报(农业与生命科学版), 2001, 27(1): 91-94.