Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (5): 796-804    DOI: 10.3785/j.issn.1008-9209.2023.04.271
资源利用与环境保护     
烷基化对竹粉/玉米醇溶蛋白复合膜材料性能的影响
魏俞涌1(),张庆法2,盛奎川2()
1.嘉兴职业技术学院智能制造学院,浙江 嘉兴 314036
2.浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
Effects of silane modification on the properties of bamboo powder/zein composite films
Yuyong WEI1(),Qingfa ZHANG2,Kuichuan SHENG2()
1.School of Intelligent Manufacturing, Jiaxing Vocational and Technical College, Jiaxing 314036, Zhejiang, China
2.College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
 全文: PDF(4380 KB)   HTML
摘要:

为实现玉米蛋白废弃物的高值化利用,以竹粉、玉米醇溶蛋白为原料制备复合膜材料,探究烷基化处理对竹粉/玉米醇溶蛋白复合膜材料性能的影响。结果表明:适宜浓度的硅烷偶联剂降低了竹粉的极性,提高了竹粉与玉米醇溶蛋白的相容性,延缓了玉米醇溶蛋白的热分解速率,提高了玉米醇溶蛋白的热稳定性,改善了竹粉/玉米醇溶蛋白复合膜的拉伸强度与断裂伸长率。其中,硅烷偶联剂和二氧化硅联合处理竹粉所制备的玉米醇溶蛋白复合膜材料在本研究中表现出最佳的综合力学性能,其拉伸强度、拉伸模量、断裂伸长率分别为0.23 MPa、4.67 MPa、408.07%。本研究结果可为生物质/玉米醇溶蛋白复合材料性能的提升提供技术支持。

关键词: 竹粉玉米醇溶蛋白烷基化复合膜材料力学性能    
Abstract:

To achieve high-value utilization of corn protein waste, composite films were prepared from bamboo powder and zein, and the effects of silane modification on the properties of bamboo powder/zein composite films were studied. The results showed that the appropriate concentrations of the silane coupling agent reduced the polarity of the bamboo powder, improved the compatibility between the bamboo powder and zein, delayed the thermal decomposition rate of zein, enhanced the thermal stability of zein, and improved the tensile strength and elongation at break of the bamboo powder/zein composite films. Among all the composite film samples, the zein composite films prepared by combined treatment with a silane coupling agent and silica exhibited the best comprehensive mechanical properties, with a tensile strength of 0.23 MPa, tensile modulus of 4.67 MPa, and elongation at break of 408.07%. These results can provide technical support for the improvement of the properties of biomass/zein composites.

Key words: bamboo powder    zein    silane modification    composite films    mechanical properties
收稿日期: 2023-04-27 出版日期: 2024-10-31
CLC:  TB332  
基金资助: 浙江省嘉兴市科技计划项目(2019AY11022);浙江省自然科学基金项目(LY22C160003);中国博士后科学基金项目(2021M692807)
通讯作者: 盛奎川     E-mail: weiyuyong66@sina.com;kcsheng@zju.edu.cn
作者简介: 魏俞涌(https://orcid.org/0000-0001-8429-4541),E-mail:weiyuyong66@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏俞涌
张庆法
盛奎川

引用本文:

魏俞涌,张庆法,盛奎川. 烷基化对竹粉/玉米醇溶蛋白复合膜材料性能的影响[J]. 浙江大学学报(农业与生命科学版), 2024, 50(5): 796-804.

Yuyong WEI,Qingfa ZHANG,Kuichuan SHENG. Effects of silane modification on the properties of bamboo powder/zein composite films. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(5): 796-804.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.04.271        https://www.zjujournals.com/agr/CN/Y2024/V50/I5/796

样品

Sample

ZFBZFBCZFK1-ZFK2-ZFK4-ZFK8-ZFK16-ZFSi-ZFKSi-ZF
玉米醇溶蛋白 Zein10101010101010101010
聚乙二醇 PEG2222222222
丙三醇 Glycerol2222222222
竹粉 Bamboo powder00.20.2000000.10
生物炭 Biochar000.10.10.10.10.10.10.10.1
KB-10000.2000000
KB-200000.200000
KB-4000000.20000
KB-80000000.2000
KB-1600000000.200
二氧化硅SiO2000000000.10
KB-Si0000000000.2
表1  复合膜材料配方 (g)
图1  烷基化竹粉的傅里叶变换红外光谱图
图2  烷基化竹粉的微观结构
图3  竹粉的烷基化反应机制
图4  复合膜材料的XRD图谱

样品

Sample

ZFBZFBCZFK1-ZFK2-ZFK4-ZFK8-ZFK16-ZFSi-ZFKSi-ZF

左接触角

Left contact angle

54.8046.7152.4955.4357.5055.6056.5656.4448.1757.43

右接触角

Right contact angle

55.2942.0149.4553.2953.6555.9653.7054.9350.1956.76
表2  复合膜材料的左右接触角 (°)
图5  复合膜材料的热稳定性

参数

Parameter

ZFBZFBCZFK1-ZFK2-ZFK4-ZFK8-ZFK16-ZFSi-ZFKSi-ZF
T160.8573.9869.6574.2474.2372.3374.8775.8271.2879.66
T2132.73135.59150.38150.69152.13147.03148.91151.77159.64169.20
T3250.84250.38257.28242.46254.61253.69255.23256.97257.45255.43
T4329.16330.49330.56330.72331.11331.04331.03331.19331.04331.34
表3  复合膜材料的TGA参数 (℃)

样品

Sample

拉伸强度

Tensile strength/MPa

拉伸模量

Tensile modulus/MPa

断裂伸长率

Elongation at break/%

ZF0.31±0.02a2.33±0.17d197.87±6.69h
BZF0.22±0.01bcd4.67±0.17a262.93±6.20g
BCZF0.24±0.01bc4.17±0.44ab327.27±2.51f
K1-ZF0.13±0.02e3.17±0.17bcd326.73±5.32f
K2-ZF0.16±0.03de3.17±0.44bcd359.83±12.62de
K4-ZF0.19±0.01cd2.00±0.50d440.57±4.93a
K8-ZF0.26±0.02ab4.00±0.58abc431.73±2.89ab
K16-ZF0.19±0.01cd2.83±0.73cd348.53±19.97ef
Si-ZF0.13±0.02e4.83±0.33a382.17±8.33cd
KSi-ZF0.23±0.04bcd4.67±0.17a408.07±7.60bc
表4  复合膜材料的拉伸性能
17 YANG X, HUANG H G, WANG L, et al. Pyrolysis tempera-ture optimization of biochar from tobacco stalk and its physicochemical characterization[J]. Journal of Zhejiang University (Agriculture & Life Sciences), 2016, 42(2): 245-255. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2015.09.101
18 魏俞涌,张庆法,李凯,等.基于生物炭增强的竹纤维/玉米醇溶蛋白复合膜的拉伸性能[J].复合材料学报,2023,40(1):447-454. DOI:10.13801/j.cnki.fhclxb.20211230.003
WEI Y Y, ZHANG Q F, LI K, et al. Tensile properties of bamboo fiber/zein composite films based on biochar enhance-ment[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 447-454. (in Chinese with English abstract)
doi: 10.13801/j.cnki.fhclxb.20211230.003
19 SUMRITH N, TECHAWINYUTHAM L, SANJAY M R, et al. Characterization of alkaline and silane treated fibers of ‘water hyacinth plants’ and reinforcement of ‘water hyacinth fibers’ with bioepoxy to develop fully biobased sustainable ecofriendly composites[J]. Journal of Polymers and the Environment, 2020, 28(10): 2749-2760. DOI: 10.1007/s10924-020-01810-y
doi: 10.1007/s10924-020-01810-y
20 JAIN M, RAMOS-SERRANO J R, DUTT A, et al. The influence of deposition time on the photoluminescent pro-perties of SiO x C y thin films obtained by Cat-CVD from monomethyl silane precursor[J]. Materials Letters, 2021, 291: 129547. DOI: 10.1016/j.matlet.2021.129547
doi: 10.1016/j.matlet.2021.129547
21 QIAN S P, SHENG K C, YU K, et al. Improved properties of PLA biocomposites toughened with bamboo cellulose nanowhiskers through silane modification[J]. Journal of Materials Science, 2018, 53(15): 10920-10932. DOI: 10.1007/s10853-018-2377-2
doi: 10.1007/s10853-018-2377-2
22 车会凌,赵元轶,冉雄雄,等.不同形貌的纳米二氧化硅制备方法及其对高分子复合材料力学性能的影响综述[J].材料导报,2020,34():1484-1489.
CHE H L, ZHAO Y Y, RAN X X, et al. Preparation methods of nano silica with different morphology and its effect on mechanical properties of polymer composites: a review[J]. Materials Reports, 2020, 34(): 1484-1489. (in Chinese with English abstract)
23 ZHANG Q F, GUO Z H, FANG Y, et al. High toughness composite films produced from zein and bamboo fibers based on incorporating biochar: effects of alkali treatment[J]. Journal of Polymers and the Environment, 2022, 30(8): 3515-3522. DOI: 10.1007/s10924-022-02448-8
doi: 10.1007/s10924-022-02448-8
24 SUN Y, LIU Z L, ZHANG L M, et al. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film[J]. International Journal of Biological Macromolecules, 2020, 143: 334-340. DOI: 10.1016/j.ijbiomac.2019.12.035
doi: 10.1016/j.ijbiomac.2019.12.035
25 LIEW F K, HAMDAN S, RAHMAN M R, et al. Thermo-mechanical properties of jute/bamboo/polyethylene hybrid composites: the combined effects of silane coupling agent and copolymer[J]. Polymer Composites, 2020, 41(11): 4830-4841. DOI: 10.1002/pc.25755
doi: 10.1002/pc.25755
26 KONG D Y, SU Y, DU X F, et al. Influence of nano-silica agglomeration on fresh properties of cement pastes[J]. Construction and Building Materials, 2013, 43: 557-562. DOI: 10.1016/j.conbuildmat.2013.02.066
doi: 10.1016/j.conbuildmat.2013.02.066
1 ASSAD L, BHAT S U, GANI A, et al. Protein based packaging of plant origin: fabrication, properties, recent advances and future perspectives[J]. International Journal of Biological Macromolecules, 2020, 164: 707-716. DOI: 10.1016/j.ijbiomac.2020.07.140
doi: 10.1016/j.ijbiomac.2020.07.140
2 杨露,刘松柏,赵江涛,等.玉米蛋白粉的营养价值及其在家禽饲料中应用研究进展[J].粮食与饲料工业,2018(11):58-61. DOI:10.7633/j.issn.1003-6202.2018.11.014
doi: 10.7633/j.issn.1003-6202.2018.11.014
27 ZEGAOUI A, DERRADJI M, MA R K, et al. Silane-modified carbon fibers reinforced cyanate ester/benzoxazine resin composites: morphological, mechanical and thermal degradation properties[J]. Vacuum, 2018, 150: 12-23. DOI: 10.1016/j.vacuum.2018.01.025
doi: 10.1016/j.vacuum.2018.01.025
28 QU L F, CHEN G Y, DONG S, et al. Improved mechanical and antimicrobial properties of zein/chitosan films by adding highly dispersed nano-TiO2 [J]. Industrial Crops and Products, 2019, 130: 450-458. DOI: 10.1016/j.indcrop.2018.12.093
doi: 10.1016/j.indcrop.2018.12.093
2 YANG L, LIU S B, ZHAO J T, et al. Nutritive value of corn gluten meal and its application in poultry feed[J]. Cereal & Feed Industry, 2018(11): 58-61. (in Chinese with English abstract)
doi: 10.7633/j.issn.1003-6202.2018.11.014
3 徐群娜,白忠薛,马建中.玉米醇溶蛋白的化学改性及应用研究进展[J].材料导报,2021,35(3):3194-3203. DOI:10.11896/cldb.20040023
doi: 10.11896/cldb.20040023
29 TAN W, HAO X L, FAN Q, et al. Bamboo particle reinforced polypropylene composites made from different fractions of bamboo culm: fiber characterization and analysis of composite properties[J]. Polymer Composites, 2019, 40(12): 4619-4628. DOI: 10.1002/pc.25329
doi: 10.1002/pc.25329
30 XUE B C, WANG X F, SUI J Y, et al. A facile ball milling method to produce sustainable pyrolytic rice husk bio-filler for reinforcement of rubber mechanical property[J]. Industrial Crops and Products, 2019, 141: 111791. DOI: 10.1016/j.indcrop.2019.111791
doi: 10.1016/j.indcrop.2019.111791
31 MALJAEE H, MADADI R, PAIVA H, et al. Incorporation of biochar in cementitious materials: a roadmap of biochar selection[J]. Construction and Building Materials, 2021, 283: 122757. DOI: 10.1016/j.conbuildmat.2021.122757
doi: 10.1016/j.conbuildmat.2021.122757
32 SARFATI R, SCHWARTZ D K. Temporally anticorrelated subdiffusion in water nanofilms on silica suggests near-surface viscoelasticity[J]. ACS Nano, 2020, 14(3): 3041-3047. DOI: 10.1021/acsnano.9b07910
doi: 10.1021/acsnano.9b07910
3 XU Q N, BAI Z X, MA J Z. Research progress on chemical modification and application of zein[J]. Materials Reports, 2021, 35(3): 3194-3203. (in Chinese with English abstract)
doi: 10.11896/cldb.20040023
4 KASAAI M R. Bio-nano-composites containing at least two components, chitosan and zein, for food packaging applications: a review of the nano-composites in comparison with the conventional counterparts[J]. Carbohydrate Polymers, 2022, 280: 119027. DOI: 10.1016/j.carbpol.2021.119027
doi: 10.1016/j.carbpol.2021.119027
5 TADELE D T, SHOREY R, MEKONNEN T H. Fatty acid modified zein films: effect of fatty acid chain length on the processability and thermomechanical properties of modified zein films[J]. Industrial Crops and Products, 2023, 192: 116028. DOI: 10.1016/j.indcrop.2022.116028
doi: 10.1016/j.indcrop.2022.116028
6 GITERU S G, ALI M A, OEY I. Solvent strength and biopoly-mer blending effects on physicochemical properties of zein-chitosan-polyvinyl alcohol composite films[J]. Food Hydrocolloids, 2019, 87: 270-286. DOI: 10.1016/j.foodhyd.2018.08.006
doi: 10.1016/j.foodhyd.2018.08.006
7 SOUZANDEH H, NETRACALI A N. Toughening of ther-moset green zein resin: a comparison between natural rubber-based additives and plasticizers[J]. Journal of Applied Polymer Science, 2020, 137(13): 48512. DOI: 10.1002/app.48512
doi: 10.1002/app.48512
8 GLUSAC J, FISHMAN A. Enzymatic and chemical modifi-cation of zein for food application[J]. Trends in Food Science & Technology, 2021, 112: 507-517. DOI: 10.1016/j.tifs.2021.04.024
doi: 10.1016/j.tifs.2021.04.024
9 MATTICE K D, MARANGONI A G. Physical properties of zein networks treated with microbial transglutaminase[J]. Food Chemistry, 2021, 338: 128010. DOI: 10.1016/j.foodchem.2020.128010
doi: 10.1016/j.foodchem.2020.128010
10 张慧君,陈又铭,辛德慧,等.麦芽糖浆糖基化改性玉米醇溶蛋白及在胶囊壳中的应用[J].食品科学,2018,39(14):29-35. DOI:10.7506/spkx1002-6630-201814005
ZHANG H J, CHEN Y M, XIN D H, et al. Wet-heating for glycosylation of zein with maltose syrup and application in capsule shells[J]. Food Science, 2018, 39(14): 29-35. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201814005
11 李梓泳,陈龙,马文丹,等.PDMDAAC改性玉米醇溶蛋白负载阿维菌素纳米颗粒的制备与性能[J].化工进展,2022,41(4):2068-2074. DOI:10.16085/j.issn.1000-6613.2021-0741
LI Z Y, CHEN L, MA W D, et al. Preparation and properties of avermectin-loaded PDMDAAC modified zein nanoparticles[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2068-2074. (in Chinese with English abstract)
doi: 10.16085/j.issn.1000-6613.2021-0741
12 BING J, XIAO X, MCCLENMENTS D J, et al. Protein corona formation around inorganic nanoparticles: food plant proteins-TiO2 nanoparticle interactions[J]. Food Hydrocolloids, 2021, 115: 106594. DOI: 10.1016/j.foodhyd.2021.106594
doi: 10.1016/j.foodhyd.2021.106594
13 XIAO J Q, GU C Q, ZHU D X, et al. Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage[J]. LWT-Food Science and Technology, 2021, 140: 110809. DOI: 10.1016/j.lwt.2020.110809
doi: 10.1016/j.lwt.2020.110809
14 张沛宇,王帆帆,林琼,等.纳米SiO2和聚乳酸/己二酸-对苯二甲酸-丁二酯共聚物复合材料包装袋对小白菜货架期品质的影响[J].浙江大学学报(农业与生命科学版),2020,46(1):93-100. DOI:10.3785/j.issn.1008-9209.2019.12.041
ZHANG P Y, WANG F F, LIN Q, et al. Effects of nano-SiO2 and polylactide/poly(butylenes adipate-co-terephthalate) packaging bags on quality of Chinese cabbage (Brassica chinensis L.) during shelf life[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 93-100. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2019.12.041
15 张庆法,杨科研,蔡红珍,等.稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J].复合材料学报,2018,35(11):3044-3050. DOI:10.13801/j.cnki.fhclxb.20180227.002
ZHANG Q F, YANG K Y, CAI H Z, et al. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 3044-3050. (in Chinese with English abstract)
doi: 10.13801/j.cnki.fhclxb.20180227.002
16 王大鹏,刘丹.静电纺丝玉米醇溶蛋白复合纳米纤维用于食品膜材料研究进展[J].云南化工,2020,47(7):13-14. DOI:10.3969/j.issn.1004-275X.2020.07.006
WANG D P, LIU D. Research progress of electrospinning zein composite nanofibers for food membrane materials[J]. Yunnan Chemical Technology, 2020, 47(7): 13-14. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-275X.2020.07.006
[1] 孟丹,张萌,贾颖宇,蒙妍,骆莹,袁莉. 异荭草素-玉米醇溶蛋白/阿拉伯胶纳米颗粒制备及其促进小鼠创面愈合的研究[J]. 浙江大学学报(农业与生命科学版), 2024, 50(4): 646-654.