Please wait a minute...
浙江大学学报(农业与生命科学版)  2024, Vol. 50 Issue (1): 53-64    DOI: 10.3785/j.issn.1008-9209.2023.02.161
植物保护     
菜缢管蚜的线粒体基因组及蚜亚科的系统发育分析
林兴雨(),宋南()
河南农业大学植物保护学院,河南 郑州 450046
Mitochondrial genome of Lipaphis pseudobrassicae (Davis, 1914) and phylogenetic analysis of Aphidinae
Xingyu LIN(),Nan SONG()
College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, Henan, China
 全文: PDF(1891 KB)   HTML
摘要:

菜缢管蚜[Lipaphis pseudobrassicae (Davis, 1914)]是一种重要的农业害虫。本研究对菜缢管蚜的线粒体全基因组进行测序、分析,并基于线粒体基因组数据重建蚜亚科(Aphidinae)的系统发育关系。在系统发育分析中,内群包含蚜亚科的31个物种,外群选择绵蚜亚科(Eriosomatinae)中苹果绵蚜(Eriosoma lanigerum)、Paracolopha morrisoni和米倍蚜(Meitanaphis microgallis)3个物种,分别利用最大似然法和贝叶斯法重建蚜亚科的系统发育树。结果表明:菜缢管蚜的线粒体基因组全长16 743 bp(GenBank登录号为OP796483),包含37个基因(13个蛋白质编码基因、2个核糖体RNA基因、22个转运RNA基因)和1个非编码控制区。采用最大似然法和贝叶斯法构建的系统发育树均显示蚜族为单系群。在最大似然法分析结果中,长管蚜族为单系群,十字蚜属与短棒蚜属构成姐妹群。然而,在贝叶斯法分析结果中,长管蚜族为非单系群,十字蚜属与短棒蚜属+双尾蚜属亲缘关系较近。本研究为更好地理解长管蚜族、十字蚜属和菜缢管蚜的系统发育关系提供了线粒体基因组数据。

关键词: 半翅目蚜亚科菜缢管蚜线粒体基因组系统发育    
Abstract:

Lipaphis pseudobrassicae (Davis, 1914) is an important agricultural insect pest. In this study, we sequenced and analyzed the entire mitochondrial genome of L. pseudobrassicae, and reconstructed the phylogenetic relationships of Aphidinae based on the mitochondrial genome data. In phylogenetic analyses, the ingroup included 31 species of Aphidinae, while the outgroup selected three species of Eriosomatinae (Eriosoma lanigerum, Paracolopha morrisoni and Meitanaphis microgallis). The maximum likelihood method and Bayesian method were used to reconstruct the phylogenetic tree of Aphidinae, respectively. The results showed that the mitochondrial genome of L. pseudobrassicae was 16 743 bp in length (GenBank accession No. OP796483), which contained 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding control region. The phylogenetic tree constructed by the maximum likelihood method and Bayesian method both showed that the tribe Aphidini was a monophyletic group. The tribe Macrosiphini was recovered as a monophyletic group, and Lipaphis was a sister to Brevicoryne according to the maximum likelihood method. However, the tribe Macrosiphini was recovered as a non-monophyletic group, and Lipaphis was a sister to Brevicoryne+Diuraphis according to the Bayesian method. This study can enhance the understanding of the phylogenetic relationships among Macrosiphini, Lipaphis, and L. pseudobrassicae by utilizing mitochondrial genome data.

Key words: Hemiptera    Aphidinae    Lipaphis pseudobrassicae (Davis, 1914)    mitochondrial genome    phylogeny
收稿日期: 2023-02-16 出版日期: 2024-03-01
CLC:  S436.341.21  
基金资助: 国家自然科学基金项目(U1904104)
通讯作者: 宋南     E-mail: xingyulin666666@163.com;songnan@henau.edu.cn
作者简介: 林兴雨(https://orcid.org/0000-0003-2368-6036),E-mail:xingyulin666666@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林兴雨
宋南

引用本文:

林兴雨,宋南. 菜缢管蚜的线粒体基因组及蚜亚科的系统发育分析[J]. 浙江大学学报(农业与生命科学版), 2024, 50(1): 53-64.

Xingyu LIN,Nan SONG. Mitochondrial genome of Lipaphis pseudobrassicae (Davis, 1914) and phylogenetic analysis of Aphidinae. Journal of Zhejiang University (Agriculture and Life Sciences), 2024, 50(1): 53-64.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.02.161        https://www.zjujournals.com/agr/CN/Y2024/V50/I1/53

亚科

Subfamily

Tribe

Species

GenBank登录号

GenBank accession No.

基因长度

Gene length/bp

蚜亚科(内群)

Aphidinae (ingroup)

长管蚜族

Macrosiphini

柳二尾蚜 Cavariella salicicolaKC33293516 317
桃蚜 Myzus persicaeMN23200616 052
台湾韭蚜 Neotoxoptera formosanaMW53426815 642
麦双尾蚜 Diuraphis noxiaKF63675815 784
菜蚜 Brevicoryne brassicaeMT90051015 927
菜缢管蚜 Lipaphis pseudobrassicaeOP79648316 743
印度修尾蚜 Indomegoura indicaMK25868915 220
飞蓬指管蚜 Uroleucon erigeronensisMZ69584015 691
苣荬指管蚜 Uroleucon sonchiMT53344617 271
麦长管蚜 Sitobion avenaeKJ74238415 180
锦鸡儿无网长管蚜 Acyrthosiphon caraganaeMW72471515 933
豌豆蚜 Acyrthosiphon pisumFJ41141116 971
Macrosiphum albifronsMW65986815 395
蔷薇长管蚜 Macrosiphum rosaeMW72471615 200

蚜族

Aphidini

高粱蚜 Melanaphis sacchariMW81110415 111
Hyalopterus arundiniformisOK27407515 408
桃粉大尾蚜 Hyalopterus amygdaliOK64161315 306
李大尾蚜 Hyalopterus pruniOK64161415 386
莲缢管蚜 Rhopalosiphum nymphaeaeOM21458615 772
麦二叉蚜 Schizaphis graminumAY53139115 721
禾谷缢管蚜 Rhopalosiphum padiKT44763115 205
红腹缢管蚜 Rhopalosiphum rufiabdominalisMN87684015 289
大豆蚜 Aphis glycinesMK11111117 954
棉蚜 Aphis gossypiiKJ66965415 869
桔蚜 Aphis citricidusMK54050116 763
Aphis coreopsidisOM89497215 623
Aphis aurantiiMN87197715 296
绣线菊蚜 Aphis spiraecolaOM89497415 162
豆蚜 Aphis craccivoraKX44714215 305
Aphis fabae mordvilkoiMG89712815 346
龙葵蚜 Aphis solanellaOM89497315 331

绵蚜亚科(外群)

Eriosomatinae (outgroup)

米倍蚜 Meitanaphis microgallisMK94843116 191
苹果绵蚜 Eriosoma lanigerumKP72258215 640
Paracolopha morrisoniMN16746716 330
表1  用于构建系统发育树的物种信息
图1  菜缢管蚜线粒体基因组结构

基因

Gene

长度

Length/bp

起始位置

Start position/bp

终止位置

Stop position/bp

起始密码子

Start codon

终止密码子

Stop codon

基因间隔

Intergenic length/bp

编码链

Coding strand

控制区

Control region

9371937213H
trnI641 1511 214-3H
trnQ661 2771 2127L
trnM671 2851 3510H
nad29781 3522 329ATATAA-2H
trnW662 3282 393-8H
trnC652 4502 3864L
trnY662 5202 4551L
cox11 5312 5224 052ATAT*0H
trnL2684 0534 1203H
cox26724 1244 795ATATAA2H
trnK734 7984 8700H
trnD634 8714 9339H
atp81504 9435 092ATATAA-20H
atp66545 0735 726ATGTAA-1H
cox37865 7266 511ATGTAA-1H
trnG636 5116 573-2H
nad33546 5746 927ATCTAG-2H
trnA646 9266 989-1H
trnR666 9897 054-2H
trnN667 0557 120-1H
trnS1627 1207 1813H
trnE647 1857 2481 036H
trnF688 3528 2850L
nad51 68010 0328 353ATATAA44L
trnH6310 13710 0753L
nad41 32111 46110 141ATGT*-7L
nad4l29111 74511 455ATATAA1L
trnT6211 74711 8082H
trnP6611 87611 811-8L
nad650111 86912 369ATATAA3H
cob1 11612 37313 488ATGTAA20H
trnS26513 50913 573-12H
nad193614 51913 584ATTTAA0L
trnL16514 58414 5200L
rrnL1 26015 84414 585-1L
trnV6215 90515 8448L
rrnS76016 67315 91469L
表2  菜缢管蚜线粒体基因组注释

参量

Parameter

长度

Length/bp

(A+T)/%

AT偏斜

AT-skew

GC偏斜

GC-skew

PCGs-H6 74182.2-0.058-0.230
PCGs-L4 22785.2-0.2980.335
rRNAs-L2 02084.6-0.0640.350
tRNAs-H91385.30.0780.030
tRNAs-L52185.0-0.0560.538
全基因组 Whole genome16 74384.40.072-0.275
表3  菜缢管蚜线粒体基因组的核苷酸组成和偏斜

密码子

Codon

数量

Count

RSCU

密码子

Codon

数量

Count

RSCU

密码子

Codon

数量

Count

RSCU

密码子

Codon

数量

Count

RSCU
UUU(F)4111.64UCU(S)731.36UAU(Y)3501.60UGU(C)221.02
UUC(F)910.36UCC(S)350.65UAC(Y)880.40UGC(C)210.98
UUA(L)3423.59UCA(S)1182.21UAA(*)4511.83UGA(W)651.34
UUG(L)510.54UCG(S)120.22UAG(*)420.17UGG(W)320.66
CUU(L)820.86CCU(P)321.58CAU(H)571.48CGU(R)40.57
CUC(L)160.17CCC(P)120.59CAC(H)200.52CGC(R)50.71
CUA(L)710.75CCA(P)341.68CAA(Q)881.71CGA(R)172.43
CUG(L)90.09CCG(P)30.15CAG(Q)150.29CGG(R)20.29
AUU(I)4721.64ACU(T)841.49AAU(N)5761.67AGU(S)270.50
AUC(I)1030.36ACC(T)560.99AAC(N)1120.33AGC(S)440.82
AUA(M)3521.77ACA(T)721.27AAA(K)5711.86AGA(S)831.55
AUG(M)450.23ACG(T)140.25AAG(K)430.14AGG(S)360.67
GUU(V)121.14GCU(A)131.79GAU(D)351.56GGU(G)201.67
GUC(V)50.48GCC(A)40.55GAC(D)100.44GGC(G)10.08
GUA(V)242.29GCA(A)121.66GAA(E)461.64GGA(G)221.83
GUG(V)10.10GCG(A)00.00GAG(E)100.36GGG(G)50.42
表4  菜缢管蚜线粒体基因组的同义密码子相对使用频率

基因

Gene

核苷酸

多样性指数

Pi

非同义

进化率

Ka

同义

进化率

Ks

Ka/Ks
atp60.1160.0570.3170.179
atp80.1770.1240.4090.303
cox10.0820.0130.3110.041
cox20.0740.0210.2810.074
cox30.1010.0370.3390.109
cob0.0890.0270.3060.088
nad10.0640.0350.1740.201
nad20.1060.0530.3090.171
nad30.1020.0490.3070.159
nad40.0720.0480.1600.300
nad4l0.0490.0220.1410.156
nad50.0750.0510.1700.300
nad60.1210.0780.2780.280
表5  蚜亚科线粒体基因组的13个蛋白质编码基因的核苷酸多样性和进化率分析
图2  菜缢管蚜22个转运RNA基因的二级结构
图3  基于最大似然法构建的13个蛋白质编码基因核苷酸序列的系统发育树标尺表示进化距离。图4同。
图4  基于贝叶斯法构建的13个蛋白质编码基因氨基酸序列的系统发育树
1 KIM H, LEE S. A molecular phylogeny of the tribe Aphidini (Insecta: Hemiptera: Aphididae) based on the mitochondrial tRNA/COⅡ, 12S/16S and the nuclear EF1α genes[J]. Systematic Entomology, 2008, 33(4): 711-721. DOI: 10.1111/j.1365-3113.2008.00440.x
doi: 10.1111/j.1365-3113.2008.00440.x
2 KIM H, LEE S, JANG Y. Macroevolutionary patterns in the Aphidini aphids (Hemiptera: Aphididae): diversification, host association, and biogeographic origins[J]. PLoS ONE, 2011, 6(9): e24749. DOI: 10.1371/journal.pone.0024749
doi: 10.1371/journal.pone.0024749
3 CHOI H, SHIN S, JUNG S, et al. Molecular phylogeny of Macrosiphini (Hemiptera: Aphididae): an evolutionary hypothesis for the Pterocomma-group habitat adaptation[J]. Molecular Phylogenetics and Evolution, 2018, 121: 12-22. DOI: 10.1016/j.ympev.2017.12.021
doi: 10.1016/j.ympev.2017.12.021
4 FAVRET C. Aphid species file[DB]. [2023-02-10].
5 FOOTTIT R G, MAW H E L, VON DOHLEN C D, et al. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes[J]. Molecular Ecology Resources, 2008, 8(6): 1189-1201. DOI: 10.1111/j.1755-0998.2008.02297.x
doi: 10.1111/j.1755-0998.2008.02297.x
6 陈根,吴刚.福州地区菜缢管蚜抗药性监测及其生化机制[J].福建农林大学学报(自然科学版),2005,34(2):204-207.
CHEN G, WU G. Resistance to seven insecticides and analysis of enzymatic characteristics in Lipaphis erysimi (Homoptera: Aphididae) in Fuzhou, China[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2005, 34(2): 204-207. (in Chinese with English abstract)
7 王玲.甘蓝型油菜品种对菜缢管蚜抗性机制的研究[D].成都:四川农业大学,2012.
WANG L. Studies on resistance mechanism of rape to Lipaphis erysimi (Homoptera: Aphididae)[D]. Chengdu: Sichuan Agricultural University, 2012. (in Chinese with English abstract)
8 张岩,刘顺,秦秋菊,等.异色瓢虫对菜缢管蚜、禾谷缢管蚜和白杨毛蚜的捕食作用[J].中国农学通报,2006,22(12):323-326. DOI:10.3969/j.issn.1000-6850.2006.12.075
ZHANG Y, LIU S, QIN Q J, et al. Predation of Harmonia axyridis (Pallas) on aphid species, Chaitophorus populeti (Panzer), Rhopalosiphum padi (Linnaeus) and Lipaphis erysimi (Kalteback)[J]. Chinese Agricultural Science Bulletin, 2006, 22(12): 323-326. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-6850.2006.12.075
9 芮昌辉,赵永巧,范贤林,等.菜缢管蚜对12种杀虫剂的交互抗药性测定[J].植物保护,1996,22(1):27-28.
RUI C H, ZHAO Y Q, FAN X L, et al. Determination of interaction resistance of Lipaphis erysimi to 12 insecticides[J]. Plant Protection, 1996, 22(1): 27-28. (in Chinese)
10 MUELLER R L. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylo-genetic analysis[J]. Systematic Biology, 2006, 55(2): 289-300. DOI: 10.1080/10635150500541672
doi: 10.1080/10635150500541672
11 WANG Y, HUANG X L, QIAO G X. The complete mito-chondrial genome of Cervaphis quercus (Insecta: Hemiptera: Aphididae: Greenideinae)[J]. Insect Science, 2014, 21(3): 278-290. DOI: 10.1111/1744-7917.12112
doi: 10.1111/1744-7917.12112
12 ZHANG B, MA C, EDWARDS O, et al. The mitochondrial genome of the Russian wheat aphid Diuraphis noxia: large repetitive sequences between trnE and trnF in aphids[J]. Gene, 2014, 533(1): 253-260. DOI: 10.1016/j.gene.2013.09.064
doi: 10.1016/j.gene.2013.09.064
13 MCDONAGH L M, WEST H, HARRISON J W, et al. Which mitochondrial gene (if any) is best for insect phylogenetics?[J]. Insect Systematics & Evolution, 2016, 47(3): 245-266. DOI: 10.1163/1876312x-47032142
doi: 10.1163/1876312x-47032142
14 MISOF B, LIU S L, MEUSEMANN K, et al. Phylogenomics resolves the timing and pattern of insect evolution[J]. Science, 2014, 346(6210): 763-767. DOI: 10.1126/science.1257570
doi: 10.1126/science.1257570
15 CAMERON S L. How to sequence and annotate insect mitochondrial genomes for systematic and comparative genomics research[J]. Systematic Entomology, 2014, 39(3): 400-411. DOI: 10.1111/syen.12071
doi: 10.1111/syen.12071
16 HUA J M, LI M, DONG P Z, et al. Comparative and phylogenomic studies on the mitochondrial genomes of Pentatomomorpha (Insecta: Hemiptera: Heteroptera)[J]. BMC Genomics, 2008, 9: 610. DOI: 10.1186/1471-2164-9-610
doi: 10.1186/1471-2164-9-610
17 LI H, LIU H Y, SONG F, et al. Comparative mitogenomic analysis of damsel bugs representing three tribes in the family Nabidae (Insecta: Hemiptera)[J]. PLoS ONE, 2012, 7(9): e45925. DOI: 10.1371/journal.pone.0045925
doi: 10.1371/journal.pone.0045925
18 MA C, YANG P C, JIANG F, et al. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust[J]. Molecular Ecology, 2012, 21(17): 4344-4358. DOI: 10.1111/j.1365-294X.2012.05684.x
doi: 10.1111/j.1365-294X.2012.05684.x
19 JIN J J, YU W B, YANG J B, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biology, 2020, 21(1): 241. DOI: 10.1186/s13059-020-02154-5
doi: 10.1186/s13059-020-02154-5
20 BERNT M, DONATH A, JÜHLING F, et al. MITOS: improved de novo metazoan mitochondrial genome annotation[J]. Molecular Phylogenetics and Evolution, 2013, 69(2): 313-319. DOI: 10.1016/j.ympev.2012.08.023
doi: 10.1016/j.ympev.2012.08.023
21 TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027. DOI: 10.1093/molbev/msab120
doi: 10.1093/molbev/msab120
22 PERNA N T, KOCHER T D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes[J]. Journal of Molecular Evolution, 1995, 41(3): 353-358.
23 LIBRADO P, ROZAS J. DnaSP v5: a software for compre-hensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452. DOI: 10.1093/bioinformatics/btp187
doi: 10.1093/bioinformatics/btp187
24 KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Molecular Biology and Evolution, 2013, 30(4): 772-780. DOI: 10.1093/molbev/mst010
doi: 10.1093/molbev/mst010
25 CAPELLA-GUTIÉRREZ S, SILLA-MARTÍNEZ J M, GABALDÓN T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses[J]. Bioinfor-matics, 2009, 25(15): 1972-1973. DOI: 10.1093/bioinformatics/btp348
doi: 10.1093/bioinformatics/btp348
26 KÜCK P, LONGO G C. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies[J]. Frontiers in Zoology, 2014, 11(1): 81. DOI: 10.1186/s12983-014-0081-x
doi: 10.1186/s12983-014-0081-x
27 NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274. DOI: 10.1093/molbev/msu300
doi: 10.1093/molbev/msu300
28 RONQUIST F, TESLENKO M, VAN DER MARK P, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Systematic Biology, 2012, 61(3): 539-542. DOI: 10.1093/sysbio/sys029
doi: 10.1093/sysbio/sys029
29 GREINER S, LEHWARK P, BOCK R. OrganellarGenome-DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Research, 2019, 47(W1): W59-W64. DOI: 10.1093/nar/gkz238
doi: 10.1093/nar/gkz238
30 BOORE J L. Animal mitochondrial genomes[J]. Nucleic Acids Research, 1999, 27(8): 1767-1780. DOI: 10.1093/nar/27.8.1767
doi: 10.1093/nar/27.8.1767
31 WANG Y, CHEN J, JIANG L Y, et al. Hemipteran mito-chondrial genomes: features, structures and implications for phylogeny[J]. International Journal of Molecular Sciences, 2015, 16(6): 12382-12404. DOI: 10.3390/ijms160612382
doi: 10.3390/ijms160612382
32 HUANG X Y, CHEN B, WEI Z H, et al. First report of complete mitochondrial genome in the tribes Coomaniellini and Dicercini (Coleoptera: Buprestidae) and phylogenetic implications[J]. Genes, 2022, 13(6): 1074. DOI: 10.3390/genes13061074
doi: 10.3390/genes13061074
33 XIAO L F, ZHANG S D, LONG C P, et al. Complete mitogenome of a leaf-mining buprestid beetle, Trachys auricollis, and its phylogenetic implications[J]. Genes, 2019, 10(12): 992. DOI: 10.3390/genes10120992
doi: 10.3390/genes10120992
34 SHEN X, LI X, SHA Z L, et al. Complete mitochondrial genome of the Japanese snapping shrimp Alpheus japonicus (Crustacea: Decapoda: Caridea): gene rearrangement and phylogeny within Caridea[J]. Science China Life Sciences, 2012, 55(7): 591-598. DOI: 10.1007/s11427-012-4348-1
doi: 10.1007/s11427-012-4348-1
35 VORONOVA N V, LEVYKINA S, WARNER D, et al. Characteristic and variability of five complete aphid mito-chondrial genomes: Aphis fabae mordvilkoi, Aphis craccivora, Myzus persicae, Therioaphis tenera and Appendiseta robiniae (Hemiptera; Sternorrhyncha; Aphididae)[J]. International Journal of Biological Macromolecules, 2020, 149: 187-206. DOI: 10.1016/j.ijbiomac.2019.12.276
doi: 10.1016/j.ijbiomac.2019.12.276
[1] 李妍,李志红,张威,张守科,舒金平. 闽鸠蝙蛾(鳞翅目:蝙蝠蛾科)线粒体基因组全序列测定和分析[J]. 浙江大学学报(农业与生命科学版), 2023, 49(2): 179-190.
[2] 单颖, 刘子琦, 施杏芬, 李国炜, 陈聪, 罗浩, 刘亚杰, 方维焕, 李肖梁. 浙江及周边地区猪流行性腹泻病毒S基因分子特征分析[J]. 浙江大学学报(农业与生命科学版), 2018, 44(5): 610-618.
[3] 王佳堃, 和文凤. 组学技术揭秘草食动物消化道真菌组成和功能[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 131-139.
[4] BARSALOTE Eda Marie,田忠玲,蔡瑞杭,李晓琳,郑经武. 中国长针线虫属(线虫门:矛线目)2 新记录种记述(英文)[J]. 浙江大学学报(农业与生命科学版), 2018, 44(1): 31-40.
[5] 岳海梅,庄华,潘朝晖,巩文峰. 藏东南地区毛壳属真菌多样性及系统发育分析[J]. 浙江大学学报(农业与生命科学版), 2017, 43(4): 431-440.
[6] 顾超, 张奇春, 徐晨光. 土壤中以抗生素为单一碳源的抗性细菌[J]. 浙江大学学报(农业与生命科学版), 2016, 42(5): 582-.
[7] 方舒, 代冲, 晏娟. 菌株CHBT-1721与中国其他温泉嗜热菌的系统进化分析(英文)[J]. 浙江大学学报(农业与生命科学版), 2015, 41(1): 15-24.
[8] 叶晓倩, 赵忠辉, 朱全武, 王营营, 林张翔, 叶楚玉, 樊龙江, 须海荣. 茶树“龙井43”叶绿体基因组测序及其系统进化(英文)[J]. 浙江大学学报(农业与生命科学版), 2014, 40(4): 404-412.
[9] 鹿连明,范国成,姚锦爱,胡秀荣,陈国庆. 柑橘黄龙病菌核糖体蛋白基因的多态性及系统发育分析[J]. 浙江大学学报(农业与生命科学版), 2011, 37(2): 125-132.
[10] 郑君芳,刘桂荣,刘树林,贺俊崎. 根瘤菌参比菌株23S rRNA基因数量和定位及其系统发育群[J]. 浙江大学学报(农业与生命科学版), 2008, 34(5): 482-490.
[11] 韦继光 徐同 黄伟华 郭良栋 潘秀湖. 从分子系统发育探讨内生拟盘多毛孢与病原拟盘多毛孢的关系[J]. 浙江大学学报(农业与生命科学版), 2008, 34(4): 367-373.
[12] 刘静  闵航  章骥  邵爱萍 . 一株产低温蛋白酶菌株的筛选鉴定及纯酶研究[J]. 浙江大学学报(农业与生命科学版), 2006, 32(3): 251-256.