Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (6): 840-852    DOI: 10.3785/j.issn.1008-9209.2023.01.131
资源利用与环境保护     
秸秆焚烧对白叶枯病稻田中致病菌和抗生素抗性基因的影响
王彬浩1,2(),陈彦博1,2,刘荣杰3,王冬群4,董作珍5,狄蕊6,王笑7,吴愉萍8()
1.浙江大学环境与资源学院,浙江 杭州 310058
2.浙江大学杭州国际科创中心,浙江 杭州 311200
3.宁海县农业技术推广站,浙江 宁波 315600
4.慈溪市农业监测中心,浙江 宁波 315300
5.宁波市海曙区农业技术管理服务站,浙江 宁波 315012
6.宁波市镇海区农业技术推广总站,浙江 宁波 315200
7.宁波市江北区农业技术推广服务站,浙江 宁波 315033
8.宁波市农业农村绿色发展中心,浙江 宁波 315012
Effects of straw burning on pathogens and antibiotic resistance genes in paddy fields with bacterial leaf blight
Binhao WANG1,2(),Yanbo CHEN1,2,Rongjie LIU3,Dongqun WANG4,Zuozhen DONG5,Rui DI6,Xiao WANG7,Yuping WU8()
1.College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, Zhejiang, China
3.Ninghai Agricultural Technology Extension Station, Ningbo 315600, Zhejiang, China
4.Cixi Agricultural Monitoring Center, Ningbo 315300, Zhejiang, China
5.Agricultural Technology Management and Service Station of Haishu District in Ningbo, Ningbo 315012, Zhejiang, China
6.Agricultural Technology Extension Station of Zhenhai District in Ningbo, Ningbo 315200, Zhejiang, China
7.Agricultural Technology Extension Service Station of Jiangbei District in Ningbo, Ningbo 315033, Zhejiang, China
8.Ningbo Agricultural and Rural Green Development Center, Ningbo 315012, Zhejiang, China
 全文: PDF(3212 KB)   HTML
摘要:

白叶枯病是水稻的重要病害之一。为了解秸秆焚烧对稻田土壤中病原菌和抗生素抗性基因(antibiotic resistance genes, ARGs)的影响,从浙江省宁波市水稻白叶枯病暴发区分别采集土壤和稻茬样品,并对采集的样品进行宏基因组高通量测序。结果表明:稻茬内致病菌相对丰度显著高于土壤,秸秆焚烧后土壤中除了速效钾含量显著升高,其他理化特性变化不明显。秸秆焚烧前后致病菌群落多样性总体上差异不明显,但是秸秆焚烧导致稻茬内水稻黄单胞菌(Xanthomonas oryzae)的相对丰度急剧降低。秸秆焚烧后土壤和稻茬内ARGs相对丰度提高,但与秸秆焚烧前差异不显著(P>0.05),而稻茬内移动基因元件(mobile genetic elements, MGEs)相对丰度显著降低(P<0.05)。此外,秸秆焚烧后致病菌和ARGs共存网络中正相关连接数占比有所下降。曼特尔(Mantel)分析表明:含水量(r=0.642,p<0.01)、pH值(r=0.582,p<0.05)、总有机碳含量(r=0.325,p<0.05)、总氮含量(r=0.570,p<0.01)和有效磷含量(r=0.311,p<0.05)与土壤ARGs组成密切相关;而溶解有机碳含量(r=0.275,p<0.05)和速效钾含量(r=0.312,p<0.05)与稻茬内ARGs组成相关,且溶解有机碳含量(r=0.201,p<0.05)显著影响稻茬内致病菌群落结构。综上所述,秸秆焚烧降低了稻茬内水稻黄单胞菌的相对丰度,暗示可以通过秸秆焚烧防控水稻白叶枯病;同时,致病菌和ARGs正相关共存关系的减弱和MGEs相对丰度的降低也表明秸秆焚烧可能遏制潜在耐药致病菌的形成。鉴于对土壤生物复合污染影响的复杂性,秸秆焚烧对稻田致病菌和抗生素抗性基因的影响还需要长期定位试验来进一步探讨。

关键词: 秸秆焚烧白叶枯病致病菌抗生素抗性基因    
Abstract:

Bacterial leaf blight in rice is a significant disease, and understanding the effects of straw burning on pathogens and antibiotic resistance genes (ARGs) in paddy fields is crucial. Soil and rice stubble samples were collected from bacterial leaf blight outbreak areas in Ningbo City of Zhejiang Province, and these samples were subjected to high-throughput metagenomic sequencing to investigate the effects of straw burning. The results indicated that the relative abundance of pathogens in the rice stubble was significantly higher than that in the soil. After straw burning, except for the significant increase in available potassium content, there were no significant changes in the other physicochemical properties of the soil. Overall, there were no significant differences in pathogen community diversity after straw burning, but straw burning led to a sharp decrease in the relative abundance of Xanthomonas oryzae in the rice stubble. The relative abundances of ARGs in the soil and rice stubble increased after straw burning, but there were no significant differences compared with those before straw burning (P>0.05), while the relative abundance of mobile genetic elements (MGEs) in the rice stubble decreased significantly after straw burning (P<0.05). The proportion of positively correlated links in the coexisting networks of pathogens-ARGs decreased after straw burning. Mantel analysis revealed that the water content (r=0.642, p<0.01), pH value (r=0.582, p<0.05), total organic carbon content (r=0.325, p<0.05), total nitrogen content (r=0.570, p<0.01), and available phosphorus content (r=0.311, p<0.05) were closely related to the soil ARG subtypes; the dissolved organic carbon (DOC) content (r=0.275, p<0.05) and available potassium content (r=0.312, p<0.05) were correlated with the ARG subtypes, and the DOC content (r=0.201, p<0.05) significantly affected the pathogen community structure in the rice stubble. In summary, straw burning can reduce the relative abundance of X. oryzae in the rice stubble, which suggests that it may be a viable option for preventing and controlling rice bacterial leaf blight; moreover, a reduction in the positive correlation ratio of pathogens-ARGs and in the relative abundance of MGEs after straw burning may inhibit the formation of potentially resistant pathogens. However, given the complexity of soil biological compound pollution, the effects of straw burning on pathogens and ARGs in paddy fields need to be further explored by long-term location experiments.

Key words: straw burning    bacterial leaf blight    pathogens    antibiotic resistance genes
收稿日期: 2023-01-13 出版日期: 2023-12-25
CLC:  S182  
基金资助: 浙江省宁波市农业技术推广项目(2021NT009);浙江省宁波市江北区科技计划项目(2021B01)
通讯作者: 吴愉萍     E-mail: wangbh7@zju.edu.cn;a_angelfish@163.com
作者简介: 王彬浩(https://orcid.org/0000-0001-8182-8261),E-mail:wangbh7@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王彬浩
陈彦博
刘荣杰
王冬群
董作珍
狄蕊
王笑
吴愉萍

引用本文:

王彬浩,陈彦博,刘荣杰,王冬群,董作珍,狄蕊,王笑,吴愉萍. 秸秆焚烧对白叶枯病稻田中致病菌和抗生素抗性基因的影响[J]. 浙江大学学报(农业与生命科学版), 2023, 49(6): 840-852.

Binhao WANG,Yanbo CHEN,Rongjie LIU,Dongqun WANG,Zuozhen DONG,Rui DI,Xiao WANG,Yuping WU. Effects of straw burning on pathogens and antibiotic resistance genes in paddy fields with bacterial leaf blight. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(6): 840-852.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2023.01.131        https://www.zjujournals.com/agr/CN/Y2023/V49/I6/840

采样点编号

No. of sampling sites

焚烧情况

Burning situation

采样地点

Sampling site

纬度

Latitude/(°)

N

经度

Longitude/(°)

E

CXLS1H焚烧后宁波市慈溪市龙山镇海甸戎村30.10121.48
CXLS1Q焚烧前30.10121.48
CXLS2Q焚烧前30.10121.49
CXLS2H焚烧后30.10121.49
HSDH焚烧后宁波市海曙区洞桥镇宣裴村29.76121.39
HSDQ焚烧前29.76121.39
HSJH焚烧后宁波市海曙区集士港镇朱浪漕村29.89121.42
HSJQ焚烧前29.89121.42
NXX1H焚烧后宁波市宁海县茶院乡下徐塘村29.31121.97
NXX1Q焚烧前29.31121.97
ZHJLH焚烧后宁波市镇海区蟹浦镇觉渡村30.00121.56
ZHJLQ焚烧前30.00121.56
ZHWRH焚烧后30.02121.57
ZHWRQ焚烧前30.02121.57
ZHQHH焚烧后宁波市镇海区骆驼街道清湖村30.00121.57
ZHQHQ焚烧前30.00121.57
表1  研究区域和样品采集
图1  秸秆焚烧前后土壤理化性质的变化短栅上不同小写字母表示在P<0.05水平差异有统计学意义。下同。
图2  秸秆焚烧前后土壤(A、B)和稻茬(C、D)致病菌丰度占比及主要致病菌属的相对丰度
图3  秸秆焚烧前后黄单胞菌的相对丰度变化A.属水平;B.种水平。
图4  秸秆焚烧前后致病菌群落组成差异A、C. α多样性;B、D. β多样性。
图5  秸秆焚烧前后土壤(A~C)和稻茬(D~F)内抗生素抗性基因总体特征及其相对丰度变化和移动基因元件相对丰度变化
图6  秸秆焚烧前后ARGs、MGEs相对丰度与致病菌相对丰度的相关性分析
图7  秸秆焚烧前后土壤(A~C)和稻茬(D~F)内致病菌和ARGs共存分析及其共存网络拓扑特征与土壤理化因子的相关性分析*表示在P<0.05水平显著相关。
图8  土壤和稻茬内致病菌群落结构(A)和ARGs组成(B)与土壤理化因子的相关性分析线条颜色表示曼特尔(Mantel)检验统计显著性,线条宽度表示曼特尔检验统计量;环境因素之间的相关性用颜色梯度显示。
1 严东权,薛颖昊,徐志宇,等.我国农作物秸秆直接还田利用现状、技术模式及发展建议[J].中国农业资源与区划,2023,44(4):1-14. DOI:10.7621/cjarrp.1005-9121.20230401
YAN D Q, XUE Y H, XU Z Y, et al. Current utilization status, technical models and development proposals for direct crop straw returning to field in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(4): 1-14. (in Chinese with English abstract)
doi: 10.7621/cjarrp.1005-9121.20230401
2 薛颖昊,冯浩杰,孙仁华,等.农作物秸秆肥料化利用研究文献计量分析[J].中国农业资源与区划,2023,44(1):108-118. DOI:10.7621/cjarrp.1005-9121.20230111
XUE Y H, FENG H J, SUN R H, et al. Bibliometric analysis of crop straw fertilizer utilization[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2023, 44(1): 108-118. (in Chinese with English abstract)
doi: 10.7621/cjarrp.1005-9121.20230111
3 陈利锋,徐敬友.农业植物病理学:南方本[M].北京:中国农业出版社,2001.
CHEN L F, XU J Y. Agricultural Plant Pathology: Southern Edition[M]. Beijing: China Agriculture Press, 2001. (in Chinese)
4 翟婧,吴水祥,赵丽稳,等.宁波市水稻白叶枯病重发原因分析与防控对策思考[J].中国植保导刊,2022,42(8):85-88. DOI:10.3969/j.issn.1672-6820.2022.08.022
ZHAI J, WU S X, ZHAO L W, et al. Analysis on causes of rice white leaf blight and countermeasures in Ningbo City[J]. China Plant Protection, 2022, 42(8): 85-88. (in Chinese)
doi: 10.3969/j.issn.1672-6820.2022.08.022
5 XIONG W, ZHAO Q Y, XUE C, et al. Comparison of fungal community in black pepper-vanilla and vanilla monoculture systems associated with vanilla Fusarium wilt disease[J]. Frontiers in Microbiology, 2016, 7: 117. DOI: 10.3389/fmicb.2016.00117
doi: 10.3389/fmicb.2016.00117
6 WEI Z, YU D. Rhizosphere fungal community structure succession of Xinjiang continuously cropped cotton[J]. Fungal Biology, 2019, 123(1): 42-50. DOI: 10.1016/j.funbio.2018.11.007
doi: 10.1016/j.funbio.2018.11.007
7 XIONG W, ZHAO Q Y, ZHAO J, et al. Different continuous cropping spans significantly affect microbial community membership and structure in a vanilla-grown soil as revealed by deep pyrosequencing[J]. Microbial Ecology, 2015, 70(1): 209-218. DOI: 10.1007/s00248-014-0516-0
doi: 10.1007/s00248-014-0516-0
8 LU L H, YIN S X, LIU X, et al. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture[J]. Soil Biology and Biochemistry, 2013, 65: 186-194. DOI: 10.1016/j.soilbio.2013.05.025
doi: 10.1016/j.soilbio.2013.05.025
9 李明,吴发启,蒋碧,等.小麦秸秆焚烧对土壤有机质及微生物和玉米产量的影响[J].干旱地区农业研究,2013,31(2):95-99. DOI:10.3969/j.issn.1000-7601.2013.02.018
LI M, WU F Q, JIANG B, et al. Effects of crops straw burning on soil organic matter, soil microbes and mean grain yield[J]. Agricultural Research in the Arid Areas, 2013, 31(2): 95-99. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-7601.2013.02.018
10 田国成,孙路,施明新,等.小麦秸秆焚烧对土壤有机质积累和微生物活性的影响[J].植物营养与肥料学报,2015,21(4):1081-1087. DOI:10.11674/zwyf.2015.0429
TIAN G C, SUN L, SHI M X, et al. Effect of wheat straw burning on soil organic matter accumulation and microbial activity[J]. Journal of Plant Nutrition and Fertilizers, 2015, 21(4): 1081-1087. (in Chinese with English abstract)
doi: 10.11674/zwyf.2015.0429
11 张雄.原子吸收分光光度计测定土壤速效钾[J].南方农业,2018,12(35):112,114. DOI:10.19415/j.cnki.1673-890x.2018.35.058
ZHANG X. Determination of available potassium in soils by atomic absorption spectrophotometer[J]. South China Agriculture, 2018, 12(35): 112, 114. (in Chinese)
doi: 10.19415/j.cnki.1673-890x.2018.35.058
12 鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000.
BAO S D. Soil Agrochemical Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000. (in Chinese)
13 BOLGER A M, LOHSE M, USADEL B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170
doi: 10.1093/bioinformatics/btu170
14 OUNIT R, WANAMAKER S, CLOSE T J, et al. CLARK: fast and accurate classification of metagenomic and genomic sequences using discriminative k-mers[J]. BMC Genomics, 2015, 16: 236. DOI: 10.1186/s12864-015-1419-2
doi: 10.1186/s12864-015-1419-2
15 YIN X L, JIANG X T, CHAI B L, et al. ARGs-OAP v2.0 with an expanded SARG database and hidden Markov models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes[J]. Bioinformatics, 2018, 34(13): 2263-2270. DOI: 10.1093/bioinformatics/bty053
doi: 10.1093/bioinformatics/bty053
16 PÄRNÄNEN K, KARKMAN A, HULTMAN J, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements[J]. Nature Communications, 2018, 9: 3891. DOI: 10.1038/s41467-018-06393-w
doi: 10.1038/s41467-018-06393-w
17 BURGESS L W, BACKHOUSE D, SWAN L J, et al. Control of Fusarium crown rot of wheat by late stubble burning and rotation with sorghum[J]. Australasian Plant Pathology, 1996, 25(4): 229-233. DOI: 10.1071/AP96042
doi: 10.1071/AP96042
18 OTERO-JIMÉNEZ V, DEL PILAR CARREÑO-CARREÑO J, BARRETO-HERNANDEZ E, et al. Impact of rice straw management strategies on rice rhizosphere microbiomes[J]. Applied Soil Ecology, 2021, 167: 104036. DOI: 10.1016/j.apsoil.2021.104036
doi: 10.1016/j.apsoil.2021.104036
19 ZHU H, WANG Z X, LUO X M, et al. Effects of straw incorporation on Rhizoctonia solani inoculum in paddy soil and rice sheath blight severity[J]. The Journal of Agricultural Science, 2014, 152(5): 741-748. DOI: 10.1017/S002185961300035X
doi: 10.1017/S002185961300035X
20 LANOISELET V M, COTTIER E J, ASH G J, et al. Prevalence and survival, with emphasis on stubble burning, of Rhizoctonia spp., causal agents of sheath diseases of rice in Australia[J]. Australasian Plant Pathology, 2005, 34(2): 135-142. DOI: 10.1071/AP05010
doi: 10.1071/AP05010
21 CHOI O, KIM H, LEE Y, et al. First report of sheath rot of rice caused by Pantoea ananatis in Korea[J]. The Plant Pathology Journal, 2012, 28(3): 331. DOI: 10.5423/PPJ.DR.08.2011.0150
doi: 10.5423/PPJ.DR.08.2011.0150
22 MANOHARAN G, LALITHA P, JEGANATHAN L P, et al. Pantoea ananatis as a cause of corneal infiltrate after rice husk injury[J]. Journal of Clinical Microbiology, 2012, 50(6): 2163-2164. DOI: 10.1128/JCM.06743-11
doi: 10.1128/JCM.06743-11
23 魏华炜.秸秆基质协同污泥好氧堆肥及资源化利用中抗生素抗性基因风险研究[D].上海:华东师范大学,2020.
WEI H W. Study on the risk of antibiotic resistance genes in straw substrate synergistic sludge compositing and resource utilization[D]. Shanghai: East China Normal University, 2020. (in Chinese with English abstract)
24 李洪林,刘凤艳,龚振平,等.稻秆还田对水稻主要病害发生的影响[J].作物研究,2012,26(1):7-10. DOI:10.3969/j.issn.1001-5280.2012.01.03
LI H L, LIU F Y, GONG Z P, et al. Effect of straw return back to paddy field on occurrence of rice major diseases[J]. Crop Research, 2012, 26(1): 7-10. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-5280.2012.01.03
25 乔玉强,曹承富,赵竹,等.秸秆还田与施氮量对小麦产量和品质及赤霉病发生的影响[J].麦类作物学报,2013,33(4):727-731. DOI:10.7606/j.issn.1009-1041.2013.04.18
QIAO Y Q, CAO C F, ZHAO Z, et al. Effects of straw-returning and N-fertilizer application on yield, quality and occurrence of Fusarium head blight of wheat[J]. Journal of Triticeae Crops, 2013, 33(4): 727-731. (in Chinese with English abstract)
doi: 10.7606/j.issn.1009-1041.2013.04.18
26 CHEN Z Y, ZHANG W, WANG G, et al. Bioavailability of soil-sorbed tetracycline to Escherichia coli under unsaturated conditions[J]. Environmental Science & Technology, 2017, 51(11): 6165-6173. DOI: 10.1021/acs.est.7b00590
doi: 10.1021/acs.est.7b00590
27 WU N, QIAO M, ZHANG B, et al. Abundance and diversity of tetracycline resistance genes in soils adjacent to repre-sentative swine feedlots in China[J]. Environmental Science & Technology, 2010, 44(18): 6933-6939. DOI: 10.1021/es1007802
doi: 10.1021/es1007802
28 XIAO K Q, LI B, MA L P, et al. Metagenomic profiles of antibiotic resistance genes (ARGs) in paddy soils from South China[J]. FEMS Microbiology Ecology, 2016, 92(3): fiw023. DOI: 10.1093/femsec/fiw023
doi: 10.1093/femsec/fiw023
29 生弘杰,王芳,相雷雷,等.土壤中抗生素抗性基因的环境行为与阻控研究进展[J].土壤学报,2023,60(1):39-49. DOI:10.11766/trxb202111100608
SHENG H J, WANG F, XIANG L L, et al. Environmental behavior and control of antibiotic resistance genes in soil: a review[J]. Acta Pedologica Sinica, 2023, 60(1): 39-49. (in Chinese with English abstract)
doi: 10.11766/trxb202111100608
[1] 张健男,王依名,张洁净,陈磊,罗金燕,易建平,李斌,安千里. 利用实时荧光定量PCR和数字PCR检测鉴定水稻细菌性条斑病菌[J]. 浙江大学学报(农业与生命科学版), 2023, 49(1): 55-64.
[2] 潘航, 李肖梁, 方维焕, 乐敏. 美国近20 年主要食源性致病菌的分布及耐药性分析——对我国细菌耐药性监控工作的启示[J]. 浙江大学学报(农业与生命科学版), 2018, 44(2): 237-246.
[3] 张毓森,叶军,苏建强. 农田生态系统抗生素抗性研究进展与挑战[J]. 浙江大学学报(农业与生命科学版), 2017, 43(6): 691-699.
[4] 黄海宁  余旭平  陈卫良  龚鸿飞  李德葆 . 转座子标签法对阴沟肠杆菌B8拮抗水稻白叶枯病菌相关基因片段的克隆与检测[J]. 浙江大学学报(农业与生命科学版), 2006, 32(3): 265-269.
[5] 李南羿  柴荣耀  Fulai Ran  郭泽建. OsiWRKY基因的水稻转化和转基因水稻抗病性分析[J]. 浙江大学学报(农业与生命科学版), 2005, 31(6): 697-700.
[6] 陆晓春  薛庆中. 转Xa21基因培矮64S R2代性状的表现[J]. 浙江大学学报(农业与生命科学版), 2001, 27(6): 591-595.