Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (6): 766-775    DOI: 10.3785/j.issn.1008-9209.2022.06.292
研究论文     
褐飞虱神经肽及其受体基因的功能筛查
王斯亮1,2(),罗序梅1,张传溪1,3()
1.浙江大学农业与生物技术学院昆虫科学研究所,杭州 310058
2.温州科技职业学院农业与生物技术学院,浙江 温州 325006
3.宁波大学植物病毒学研究所,农产品质量安全危害因子与风险防控国家重点实验室/农业农村部和浙江省植物保护生物技术重点实验室,浙江 宁波 315211
Screening the function of genes encoding neuropeptides and their receptors in Nilaparvata lugens
Siliang WANG1,2(),Xumei LUO1,Chuanxi ZHANG1,3()
1.Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.College of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, Zhejiang, China
3.State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products/Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, Zhejiang, China
 全文: PDF(4575 KB)   HTML
摘要:

神经肽对昆虫的生命活动和环境适应性具有重要影响,是害虫防治的潜在靶标。褐飞虱(Nilaparvata lugens)是亚洲地区一种重要的水稻害虫。本研究对褐飞虱神经肽及其受体基因的功能进行了筛查,通过聚合酶链反应扩增并验证得到了41个神经肽基因(含1个可变剪接本)和44个受体基因。通过RNA干扰方法,得到沉默后造成高死亡率的4个神经肽基因(NlCCAPNlETHNlOKANlPK)和2个受体基因(NlA36NlA46),这些基因在褐飞虱3龄若虫阶段注射双链RNA(double-stranded RNA, dsRNA)进行沉默后,成虫相对存活率<0.2,具有成为害虫防治靶标的潜力。RNA干扰结果表明:几种蜕皮前后行为调控神经肽,如甲壳类动心肽、蜕皮诱导激素、鞣化激素的基因与其他昆虫研究中报道的功能相似,而另一些与蜕皮调控相关的神经肽(如促前胸腺激素、羽化激素)在褐飞虱中的生理功能则不明显。本研究为褐飞虱神经肽生理功能的深入探索奠定了基础。

关键词: 褐飞虱神经肽RNA干扰蜕皮    
Abstract:

Neuropeptides are crucial for life activities and environmental fitness of insects, which are potential targets for pest control. The brown planthopper (Nilaparvata lugens) is an important pest on rice in Asia. Thus, functional screening analysis of genes encoding neuropeptides and their receptors in N. lugens were conducted. The cDNA sequences of 41 neuropeptides (containing one alternative splicing transcript) and 44 receptors were verified by polymerase chain reaction (PCR). Four neuropeptide genes (NlCCAP, NlETH, NlOKA and NlPK) and two receptor genes (NlA36 and NlA46) were identified to cause high mortality through RNA interference (RNAi), showing potential in pest control. These genes knockdown resulted in the relative survival rate of adult less than 0.2 when injected with double-stranded RNA (dsRNA) at the third instar, and had the potential to be target genes for pest control. The results of RNAi also demonstrated that neuropeptides, such as crustacean cardioactive peptide (CCAP), ecdysis triggering hormone (ETH) and bursicon were conserved in physiological function, while other neuropeptides (eg. prothoracicotropic hormone, eclosion hormone) which related to ecdysis in other insects were undefined in physiological function in N. lugens. Our study provides a basis for further exploration of neuropeptides’ physiological function in N. lugens.

Key words: Nilaparvata lugens    neuropeptide    RNA interference    ecdysis
收稿日期: 2022-06-29 出版日期: 2022-12-27
CLC:  S 433.3  
基金资助: 国家自然科学基金项目(31871954);温州科技职业学院博士科研启动项目
通讯作者: 张传溪     E-mail: wsl512935@163.com;chxzhang@zju.edu.cn
作者简介: 王斯亮(https://orcid.org/0000-0001-6831-0652),E-mail:wsl512935@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王斯亮
罗序梅
张传溪

引用本文:

王斯亮,罗序梅,张传溪. 褐飞虱神经肽及其受体基因的功能筛查[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 766-775.

Siliang WANG,Xumei LUO,Chuanxi ZHANG. Screening the function of genes encoding neuropeptides and their receptors in Nilaparvata lugens. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(6): 766-775.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.06.292        https://www.zjujournals.com/agr/CN/Y2022/V48/I6/766

神经肽基因

Neuropeptide gene

3龄时进行的RNA干扰

RNAi at the third instar

5龄时进行的RNA干扰

RNAi at the fifth instar

表型

Phenotype

RNA干扰效率

Efficiency of

RNAi/%

成虫相对存活率

Relative survival

rate of adult

RNA干扰效率

Efficiency of

RNAi/%

成虫相对存活率

Relative survival

rate of adult

NlACP97.88±0.361.0498.21±0.111.00
NlAKH86.12±2.830.6373.98±2.360.85
NlAST-A88.70±4.011.1397.15±0.401.12
NlAST-c99.24±0.281.0788.95±2.710.94
NlAST-cc78.76±7.140.7898.44±0.261.06
NlAT82.17±1.350.7876.52±0.810.78
NlAVLP94.82±1.140.9085.95±5.400.93
Nlburs-a99.76±0.020.7199.70±0.020.78成虫翅不展
Nlburs-b91.15±0.730.8085.75±5.860.78成虫翅不展
NlCAP2b93.14±2.810.8999.35±0.090.85
NlCCAP97.60±0.470.0477.82±5.240.76蜕皮受阻
NlCCH187.21±4.540.7384.42±4.980.64
NlCCH299.19±0.300.9882.98±1.260.60
NlCRZ97.46±0.190.9583.04±5.890.83
NlDH3198.67±0.800.7474.71±3.880.79
NlDH4583.57±6.230.9775.00±4.560.79
NlEH172.87±6.830.7295.81±1.380.94
NlEH276.02±5.830.7596.87±0.570.87
Nlelevenin94.89±0.811.0098.35±0.581.07体壁黑化
NlETH84.50±4.050.0299.51±0.280.52蜕皮前死亡
NlFMRF84.54±5.980.9585.45±2.001.07
NlGPA292.82±1.270.9195.37±0.690.81
NlGPB593.16±0.641.0685.62±3.951.07
Nlkinin78.78±2.830.8383.57±0.610.77
NlMIP89.31±0.730.9078.44±4.391.03
NlMS98.55±0.230.7895.20±1.170.99
NlNP98.39±0.530.9798.43±0.030.69
NlNPF76.43±5.740.6898.27±0.331.06
NlNPLPl85.26±0.551.0579.84±7.080.75
NlNPLP3l97.84±0.481.0497.02±0.500.75
NlNPLP4l97.90±0.670.8280.97±6.290.95
NlOKA99.72±0.050.0498.38±0.380.95蜕皮受阻
NlOKB97.41±0.090.9398.99±0.211.00
NlPDF98.05±0.380.7682.61±1.701.06
NlPK88.17±2.080.1795.03±0.690.93蜕皮受阻
Nlproctolin90.05±0.590.9199.29±0.120.87
NlPTTH79.01±1.190.6279.82±0.950.73
NlRY77.13±7.130.8989.74±1.540.73
NlsNPF99.48±0.140.7062.10±9.600.94
NlSIF99.88±0.010.8570.18±7.010.82
NlTK99.28±0.071.0685.05±2.910.91
表1  褐飞虱神经肽基因的RNA干扰效果

受体基因

Receptor gene

3龄时进行的RNA干扰

RNAi at the third instar

5龄时进行的RNA干扰

RNAi at the fifth instar

表型

Phenotype

RNA干扰效率

Efficiency of RNAi/%

成虫相对存活率

Relative survival

rate of adult

RNA干扰效率

Efficiency of

RNAi/%

成虫相对存活率

Relative survival

rate of adult

NlA272.38±1.880.7468.69±7.511.11
NlA372.20±2.321.1255.52±8.590.97
NlA481.01±3.500.8159.89±6.300.63
NlA681.92±4.400.7974.41±8.900.69
NlA778.57±2.630.5963.61±9.561.04
NlA889.33±0.280.7289.41±3.700.97
NlA971.14±2.440.5776.28±3.300.90
NlA1275.35±1.840.7461.25±9.320.97
NlA1376.71±1.420.9476.97±4.230.83
NlA1485.74±0.790.6066.65±9.000.97
NlA1570.13±8.470.8551.08±4.250.69
NlA1682.18±3.380.8174.04±5.370.97
NlA1775.00±6.020.9652.57±8.000.76
NlA1960.81±7.740.7572.77±2.930.83
NlA2162.53±1.630.8257.59±9.090.90
NlA2272.96±9.050.7067.94±7.710.76
NlA2371.04±4.030.7870.66±9.010.83
NlA2451.51±3.170.7754.94±9.180.76
NlA2576.70±3.680.9362.06±9.690.83
NlA2769.32±7.680.9065.11±4.850.90
NlA3082.14±2.350.8481.33±3.100.76
NlA3166.74±6.740.8153.94±6.221.04
NlA3262.92±7.700.6487.33±1.060.69
NlA3483.63±2.450.5160.64±5.531.01
NlA3580.36±0.910.9258.25±6.040.73
NlA3665.64±8.910.0572.73±5.010.83蜕皮受阻
NlA3870.12±7.260.8868.26±6.480.65
NlA3971.29±2.430.6765.34±4.050.65
NlA4079.07±5.501.0469.89±4.801.09
NlA4185.36±2.160.9168.07±2.160.76
NlA4283.76±3.390.6373.18±5.070.90体壁黑化
NlA4387.62±3.480.9452.34±9.890.69
NlA4484.52±4.460.9159.27±5.650.90
NlA4687.22±0.950.0072.55±3.060.33成虫翅不展
NlA4769.32±4.270.8259.46±6.070.90
NlA4875.41±3.750.7565.32±6.070.87
NlA4960.59±2.700.8861.39±6.210.87
NlB177.79±3.090.9056.45±7.410.76
NlB277.82±0.780.6365.06±6.590.83
NlB367.99±0.211.1559.55±8.381.04
NlB484.89±2.260.8260.25±6.400.83
NlB568.24±7.560.9466.07±7.220.97
NlB680.11±6.390.9182.61±2.281.11
NlB783.57±6.060.8589.58±0.600.69
表2  褐飞虱神经肽受体基因的RNA干扰效果
图1  褐飞虱在 NlETH 基因经RNA干扰后的存活率和表型
图2  褐飞虱在 NlCCAP 基因经RNA干扰后的存活率和表型A. 褐飞虱在不同龄期注射dsNlCCAP后的存活率;B. 褐飞虱在NlCCAP基因经RNA干扰后的表型。
图3  注射不同的dsRNA后编码鞣化激素的2个亚基的基因表达量变化
图4  褐飞虱在 Nlburs - a 和 Nlburs - b 基因经RNA干扰后的存活率和表型A.褐飞虱在不同龄期注射dsNlburs-a和dsNlburs-b后的存活率;B.褐飞虱在Nlburs-a和Nlburs-b基因经RNA干扰后的表型。
图5  褐飞虱不同龄期干扰鞣化激素基因对成虫表型(A)及成虫卷翅率(B)的影响
图6  褐飞虱在 NlA46 基因经RNA干扰后的存活率和表型
1 程家安,朱金良,祝增荣,等.稻田飞虱灾变与环境调控[J].环境昆虫学报,2008,30(2):176-182.
CHENG J A, ZHU J L, ZHU Z R, et al. Rice planthopper outbreak and environment regulation[J]. Journal of Environ-mental Entomology, 2008, 30(2): 176-182. (in Chinese with English abstract)
2 XU H J, CHEN T, MA X F, et al. Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae)[J]. Insect Molecular Biology, 2013, 22(6): 635-647. DOI:10.1111/imb.12051
doi: 10.1111/imb.12051
3 XUE J, ZHOU X, ZHANG C X, et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation[J]. Genome Biology, 2014, 15(12): 521. DOI:10.1186/s13059-014-0521-0
doi: 10.1186/s13059-014-0521-0
4 SCHOOFS L, DE LOOF A, VAN HIEL M B. Neuropeptides as regulators of behavior in insects[J]. Annual Review of Entomology, 2017, 62: 35-52. DOI:10.1146/annurev-ento-031616-035500
doi: 10.1146/annurev-ento-031616-035500
5 ELPHICK M R, MIRABEAU O, LARHAMMAR D. Evolution of neuropeptide signalling systems[J]. The Journal of Experimental Biology, 2018, 221(3): jeb151092. DOI:10.1242/jeb.151092
doi: 10.1242/jeb.151092
6 TANAKA Y, SUETSUGU Y, YAMAMOTO K, et al. Transcriptome analysis of neuropeptides and G-protein coupled receptors (GPCRs) for neuropeptides in the brown planthopper Nilaparvata lugens [J]. Peptides, 2014, 53: 125-133. DOI:10.1016/j.peptides.2013.07.027
doi: 10.1016/j.peptides.2013.07.027
7 BAO Y Y, WANG Y, WU W J, et al. De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response[J]. Genomics, 2012, 99(4): 256-264. DOI:10.1016/j.ygeno.2012.02.002
doi: 10.1016/j.ygeno.2012.02.002
8 LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method[J]. Methods, 2001, 25(4): 402-408. DOI:10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
9 WANG S L, WANG W W, MA Q, et al. Elevenin signaling modulates body color through the tyrosine-mediated cuticle melanism pathway[J]. The FASEB Journal, 2019, 33(9): 9731-9741. DOI:10.1096/fj.201802786RR
doi: 10.1096/fj.201802786RR
10 VATANPARAST M, KIM Y. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua [J]. PLoS ONE, 2017, 12(8): e0183054. DOI:10.1371/journal.pone.0183054
doi: 10.1371/journal.pone.0183054
11 ZITNAN D, ADAMS M E. Neuroendocrine regulation of ecdysis[M]//GILBERT L. Insect Endocrinology. London: Academic Press, 2012: 253-309.
12 朱斌,刘孝明,杜孟芳,等.昆虫鞣化激素研究进展[J].昆虫学报,2013,56(12):1469-1479. DOI:10.16380/j.kcxb.2013.12.003
ZHU B, LIU X M, DU M F, et al. Progress in insect bursicon[J]. Acta Entomologica Sinica, 2013, 56(12): 1469-1479. (in Chinese with English abstract)
doi: 10.16380/j.kcxb.2013.12.003
13 弓慧琼,赵小明,郭东龙,等.昆虫鞣化激素及其受体研究进展[J].应用昆虫学报,2018,55(3):317-328. DOI:10.7679/j.issn.2095-1353.2018.043
GONG H Q, ZHAO X M, GUO D L, et al. Progress in research on insect bursicon and its receptor[J]. Chinese Journal of Applied Entomology, 2018, 55(3): 317-328. (in Chinese with English abstract)
doi: 10.7679/j.issn.2095-1353.2018.043
14 ARAKANE Y, LI B, MUTHUKRISHNAN S, et al. Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum [J]. Mechanisms of Development, 2008, 125(11/12): 984-995. DOI:10.1016/j.mod.2008.09.002
doi: 10.1016/j.mod.2008.09.002
15 HASEGAWA K. The diapause hormone of the silkworm, Bombyx mori [J]. Nature, 1957, 179(4573): 1300-1301.
16 WULFF J P, CAPRIOTTI N, ONS S. Orcokinins regulate the expression of neuropeptide precursor genes related to ecdysis in the hemimetabolous insect Rhodnius prolixus [J]. Journal of Insect Physiology, 2018, 108: 31-39. DOI:10.1016/j.jinsphys.2018.05.006
doi: 10.1016/j.jinsphys.2018.05.006
17 HOLMAN G M, COOK B J, NACHMAN R J. Primary structure and synthesis of a blocked myotropic neuropeptide isolated from the cockroach, Leucophaea maderae [J]. Comparative Biochemistry and Physiology C: Comparative Pharmacology, 1986, 85(1): 219-224.
18 KAMIMOTO S, NOHARA R, ICHIKAWA T. Coordination between the electrical activity of developing indirect flight muscles and the firing activity of a population of neurosecretory cells in the silkmoth, Bombyx mori [J]. Zoological Science, 2006, 23(5): 449-457. DOI:10.2108/zsj.23.449
doi: 10.2108/zsj.23.449
19 VERLEYEN P, CLYNEN E, HUYBRECHTS J, et al. Fraenkel’s pupariation factor identified at last[J]. Developmental Biology, 2004, 273(1): 38-47. DOI:10.1016/j.ydbio.2004.05.021
doi: 10.1016/j.ydbio.2004.05.021
20 PAWEL M, MONIKA S, JOANNA P B, et al. New myotropic and metabotropic actions of pyrokinins in tenebrionid beetles[J]. General and Comparative Endocri-nology, 2012, 177(2): 263-269. DOI:10.1016/j.ygcen.2012.04.008
doi: 10.1016/j.ygcen.2012.04.008
[1] 汪芳,党聪,金虹霞,肖山,钟馥骏,方琦,姚洪渭,叶恭银. RNA干扰技术在害虫防治中的应用及其安全性[J]. 浙江大学学报(农业与生命科学版), 2022, 48(6): 683-691.
[2] 苏时萍,李卿青,谢启明,刘帆,张君,李西雷. 胭脂鱼核连蛋白2/Nesfatin-1基因克隆及其在间脑与肝胰脏中的差异表达[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 637-646.
[3] 郭燕, 巨青松, 姚洪渭*, 蒋明星, 叶恭银, 程家安. 环境因子变化对褐飞虱非特异性酯酶活性的影响[J]. 浙江大学学报(农业与生命科学版), 2013, 39(6): 591-599.
[4] 黄玉吉1,2, 陈斌1*, 张传溪2*. 褐飞虱体内Himetobi P病毒的检测及组织定位[J]. 浙江大学学报(农业与生命科学版), 2013, 39(5): 473-590.
[5] 戈林泉, 周国鑫, 王祺, 祝树德, 娄永根. 水稻β-石竹烯合成酶基因OsCAS的克隆鉴定、原核表达及其遗传转化[J]. 浙江大学学报(农业与生命科学版), 2009, 35(4): 365-371.
[6] 王霞 杜孟浩 周国鑫等. 水杨酸与过氧化氢信号途径在褐飞虱诱导的水稻挥发物释放中的作用[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 15-23.
[7] 杜孟浩  严兴成  娄永根  程家安. 褐飞虱唾液中诱导水稻释放挥发物的活性组分研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(3): 237-244.
[8] 吕仲贤  俞晓平  HEONG Kong-luen  胡萃. 氮营养对褐飞虱在IR64稻株上取食和产卵行为的影响[J]. 浙江大学学报(农业与生命科学版), 2005, 31(1): 62-70.
[9] 马波  娄永根  程家安. 几种生物因子对褐飞虱诱导的水稻挥发物活性的影响[J]. 浙江大学学报(农业与生命科学版), 2004, 30(6): 589-595.
[10] 赵伟春  程家安  陈正贤. 褐飞虱抗原检测最佳ELISA条件的建立[J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 629-634.
[11] 张家兴  黄学应  何娟娟  江家元. 扬子鳄心脏神经肽Y免疫反应纤维和细胞的分布[J]. 浙江大学学报(农业与生命科学版), 2001, 27(6): 657-660.
[12] 刘新  华跃进  徐步进  徐强. 昆虫脑神经肽的研究进展:抑前胸腺肽PTSP[J]. 浙江大学学报(农业与生命科学版), 2001, 27(5): 479-482.