Please wait a minute...
浙江大学学报(农业与生命科学版)  2023, Vol. 49 Issue (3): 398-412    DOI: 10.3785/j.issn.1008-9209.2022.04.181
资源利用与环境保护     
材料挤出三维打印单材料载体配方肥的制备与控释效果
张鑫1(),伍倩2,马庆旭1,尹俊2,何寅峰3(),吴良欢1()
1.浙江大学环境与资源学院,污染环境修复与生态健康教育部重点实验室,浙江 杭州 310058
2.浙江大学机械工程学院,浙江 杭州 310027
3.诺丁汉大学卓越灯塔计划(宁波)创新研究院,浙江 宁波 315000
Preparation of single-material carrier formulation fertilizer made by material extrusion three-dimensional printing and its controlled release effect
Xin ZHANG1(),Qian WU2,Qingxu MA1,Jun YIN2,Yinfeng HE3(),Lianghuan WU1()
1.Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
2.School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
3.Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315000, Zhejiang, China
 全文: PDF(7175 KB)   HTML
摘要:

三维打印(three-dimensional printing, 3D打印)作为一项可以快速小批量生产定制产品的加工技术,在园艺园林方向的应用潜力巨大。本研究借鉴3D打印缓释配方相关研究,完成单材料载体配方肥各组分的初步筛选,利用材料挤出3D打印技术成功打印出以海藻酸钠或黄原胶为黏结剂、甘露醇为填充剂、固定配比的乙醇溶液为溶剂、海泡石为增稠剂、尿素为核心肥料的单材料载体配方肥,确定尿素在海藻酸钠作为黏结剂时的最高添加比例为1∶4(尿素与溶剂质量体积比),而在黄原胶作为黏结剂时的最高添加比例为3∶4(尿素与溶剂质量体积比);明确了用氯化钾、磷酸二氢钾、硫酸锌在最佳配方下替换尿素也可以实现打印;还通过多材料挤出3D打印技术进一步探讨了不同养分组合和元素耦合的打印可能性。通过打印参数调节试验明确了配方肥的最佳打印条件:打印速度200 mm/min、挤出速度0.02 mm/s、挤出高度1 mm、喷嘴直径1 mm。通过砂柱淋洗法进一步研究了不同配方肥的控释周期,发现不同配方及打印后处理下的单材料载体配方肥控释周期存在明显差异,经海泡石改良后的配方可以明显改变单材料载体配方肥的养分释放速率,其控释周期最长可达30 d。

关键词: 材料挤出三维打印新型肥料园艺园林控释效果    
Abstract:

As a processing technology that can rapidly fabricate customized products in small batches, three-dimensional (3D) printing has great application potential in horticultural gardens. On the basis of existing studies on controlled releasing materials for 3D printing, the carrier materials for solo nutrition were developed after a range of formulation screening. The new formulations were suitable for material extrusion 3D printing and the single-material carrier formulation fertilizer contained sodium alginate or xanthan gum as a binder, mannitol as a filler, ethanol/water with fixed ratio as a solvent, sepiolite as a thickening agent, and urea as the core fertilizer. It was confirmed that the maximum adding ratio of urea could reach 1∶4 [m (urea)∶V (solvent)] when using sodium alginate as a binder, while the maximum adding ratio could reach 3∶4 [m (urea)∶V (solvent)] when using xanthan gum as a binder. It was confirmed that the developed formulation could also be used as the carrier of other types of nutrients including KCl, K2HPO4, and ZnSO4. This work also demonstrated that it was possible to combine different nutrients and achieve element couplings by using multi-material extrusion 3D printing technology. Through the printing parameter adjustment experiment, the optimal printing was achieved when the printing speed was 200 mm/min, and the extrusion speed was 0.02 mm/s, and the extrusion height was 1 mm, and the nozzle diameter was 1 mm. The controlled release period of different formulations were further studied by the sand column leaching method. There were significant differences between the controlled release period of single-material carrier formulation fertilizers under different formulations and their post-treatments. The modified formulation with sepiolite can obviously change the release rate of single-material carrier formula fertilizer and the longest controlled release period reached 30 d.

Key words: material extrusion three-dimensional (3D) printing    new fertilizer    horticultural garden    controlled release effect
收稿日期: 2022-04-18 出版日期: 2023-06-25
CLC:  S143  
基金资助: 国家自然科学基金项目(31801936)
通讯作者: 何寅峰,吴良欢     E-mail: zhangxin1996@zju.edu.cn;Yinfeng.he@nottingham.ac.uk;finm@zju.edu.cn
作者简介: 张鑫(https://orcid.org/0000-0003-2436-395X),E-mail:zhangxin1996@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张鑫
伍倩
马庆旭
尹俊
何寅峰
吴良欢

引用本文:

张鑫,伍倩,马庆旭,尹俊,何寅峰,吴良欢. 材料挤出三维打印单材料载体配方肥的制备与控释效果[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 398-412.

Xin ZHANG,Qian WU,Qingxu MA,Jun YIN,Yinfeng HE,Lianghuan WU. Preparation of single-material carrier formulation fertilizer made by material extrusion three-dimensional printing and its controlled release effect. Journal of Zhejiang University (Agriculture and Life Sciences), 2023, 49(3): 398-412.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2022.04.181        https://www.zjujournals.com/agr/CN/Y2023/V49/I3/398

配方

Formulation

甘露醇

Mannitol/g

海藻酸钠

Sodium alginate/g

黄原胶

Xanthan gum/g

尿素

Urea/g

溶剂体积比(乙醇∶水)

Solvent volume ratio (ethanol∶water)

溶剂

Solvent/mL

F1180.2003∶720
F2180.2053∶720
F3180.20103∶720
F4180.20153∶720
F5181.0003∶720
F6181.0053∶720
F7181.00103∶720
F8181.00153∶720
F91800.203∶720
F101800.253∶720
F111800.2103∶720
F121800.2153∶720
F131801.003∶720
F141801.053∶720
F151801.0103∶720
F161801.0153∶720
表1  配方表
图1  试验仪器及打印一维、三维结构设计图A.试验3D打印机;B.“几”字结构;C.不同孔隙度第一层打印设计图。
图2  配方F1~F16倒置前后对比图A. 配方F1~F8正置图(红框标记处代表固液分离);B. 配方F9~F16正置图(红框标记处代表固液分离);C. 配方F1~F8倒置图(红框标记处代表固液分离);D. 配方F9~F16倒置图(红框标记处代表坍塌部分)。
图3  不同配方的黏度和剪切应力随剪切速率的稳态力学变化情况n=3。
图4  不同配方随角频率变化的动态损耗因子(A)及不同配方的平均动态损耗因子(B)n=3。

打印参数

Printing

parameter

打印速度

Printing

speed/

(mm/min)

挤出速度

Extrusion

speed/

(mm/s)

喷嘴直径

Nozzle

diameter/

mm

温度

Temperature/

a2500.05125
b2000.05125
c1500.05125
d1000.05125
e2500.02125
f2000.02125
g1500.02125
h1000.02125
表2  打印参数调节
图5  配方F6和F14在不同打印速度及挤出速度下的条带表现
图6  不同打印参数下的条带宽度及填充率A~B. 配方F6和F14在不同打印参数下的条带宽度;C~D. 不同打印参数下的填充率。打印参数a~c、e~h对应的值见表2。
图7  可打印配方在不同打印参数下的成型结构建模
图8  喷嘴打印速度与打印时间之间的关系
图9  不同配方打印的“浙大校徽”展示图
图 10  配方F14打印展示图(A)以及配方F6、F14改良前后氮素累计释放率(B)
图11  不同孔隙度的配方F14氮素累计释放率P0代表孔隙度为0,P50代表孔隙度为50%,P67代表孔隙度为67%。
图12  多材料3D打印设计A. 复合结构展示图;B~C. 不同配方组合打印的复合结构展示图;D. 核壳结构展示图;E. 不同配方打印的核壳结构展示图。F17:F6+海泡石;F18:配方F14中的尿素替换成氯化钾。
图 13  配方F6、F14改良前后的SEM图

配方

Formulation

抗压强度

Compressive strength/N

含水率

Moisture content/%

F633.50±6.251.54

F6+海泡石

F6+sepiolite

>501.48
F6+CaCl2>502.68
F1438.33±7.681.58

F14+海泡石

F14+sepiolite

>501.55
F15>501.10
表3  不同配方的抗压强度和含水率
1 周静,胡芹远,章力干,等.从供给侧改革思考我国肥料和土壤调理剂产业现状、问题与发展对策[J].中国科学院院刊,2017,32(10):1103-1110. DOI:10.16418/j.issn.1000-3045.2017.10.008
ZHOU J, HU Q Y, ZHANG L G, et al. Key scientific problems and development countermeasures of fertilizer industry based on agricultural supply-side reform[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(10): 1103-1110. (in Chinese with English abstract)
doi: 10.16418/j.issn.1000-3045.2017.10.008
2 赵玉芬,尹应武.我国肥料使用中存在的问题及对策[J].科学通报,2015,60(36):3527-3534. DOI:10.1360/N972015-00672
ZHAO Y F, YIN Y W. Key scientific problems on establishing green fertilizer ensurance system[J]. Chinese Science Bulletin, 2015, 60(36): 3527-3534. (in Chinese with English abstract)
doi: 10.1360/N972015-00672
3 KHAN M A, MINGZHI W, LIM B K, et al. Utilization of waste paper for an environmentally friendly slow-release fertilizer[J]. Journal of Wood Science, 2008, 54(2): 158-161. DOI: 10.1007/s10086-007-0924-6
doi: 10.1007/s10086-007-0924-6
4 WEN P, WU Z S, HE Y H, et al. Microwave-assisted synthesis of a semi-IPN slow-release nitrogen fertilizer with water absorbency from cotton stalks[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6572-6579. DOI: 10.1021/acssuschemeng.6b01466
doi: 10.1021/acssuschemeng.6b01466
5 MIKULA K, IZYDORCZYK G, SKRZYPCZAK D, et al. Controlled release micronutrient fertilizers for precision agriculture: a review[J]. Science of the Total Environment, 2020, 712: 136365. DOI: 10.1016/j.scitotenv.2019.136365
doi: 10.1016/j.scitotenv.2019.136365
6 TIMILSENA Y P, ADHIKARI R, CASEY P, et al. Enhanced efficiency fertilizers: a review of formulation and nutrient release patterns[J]. Journal of the Science of Food and Agriculture, 2015, 95(6): 1131-1142. DOI: 10.1002/jsfa.6812
doi: 10.1002/jsfa.6812
7 FENG C, LÜ S Y, GAO C M, et al. “Smart” fertilizer with temperature- and pH-responsive behavior via surface-initiated polymerization for controlled release of nutrients[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3157-3166. DOI: 10.1021/acssuschemeng.5b01384
doi: 10.1021/acssuschemeng.5b01384
8 CHEN J, LÜ S Y, ZHANG Z, et al. Environmentally friendly fertilizers: a review of materials used and their effects on the environment[J]. Science of the Total Environment, 2018, 613/614: 829-839. DOI: 10.1016/j.scitotenv.2017.09.186
doi: 10.1016/j.scitotenv.2017.09.186
9 岳焕芳,王克武,孟范玉,等.新型缓控释增效肥研究进展和发展前景[J].蔬菜,2020(1):38-42.
YUE H F, WANG K W, MENG F Y, et al. Researching progress and developing prospect for new slow/controlled releasing fertilizer[J]. Vegetables, 2020(1): 38-42. (in Chinese with English abstract)
10 黄允,徐天成,高恒宽,等.缓控释肥应用研究进展[J].湖北农业科学,2020,59():32-36. DOI:10.14088/j.cnki.issn0439-8114.2020.S1.008
HUANG Y, XU T C, GAO H K, et al. Research progress in the application of slow and controlled release fertilizers[J]. Hubei Agricultural Sciences, 2020, 59(): 32-36. (in Chinese with English abstract)
doi: 10.14088/j.cnki.issn0439-8114.2020.S1.008
11 TIAN H Y, LIU Z G, ZHANG M, et al. Biobased polyure-thane, epoxy resin, and polyolefin wax composite coating for controlled-release fertilizer[J]. ACS Applied Materials & Interfaces, 2019, 11(5): 5380-5392. DOI: 10.1021/acsami.8b16030
doi: 10.1021/acsami.8b16030
12 高璐阳,王怀利,王晓飞,等.我国发展缓控释肥的意义及前景[J].磷肥与复肥,2015,30(4):14-17. DOI:10.3969/j.issn.1007-6220.2015.04.007
GAO L Y, WANG H L, WANG X F, et al. The significance and prospect of slow/controlled release fertilizer development in China[J]. Phosphate Fertilizer and Compound Fertilizer, 2015, 30(4): 14-17. (in Chinese with English abstract)
doi: 10.3969/j.issn.1007-6220.2015.04.007
13 MALHOTRA S K. Water soluble fertilizers in horticultural crops—an appraisal[J]. Indian Journal of Agricultural Sciences, 2016, 86(10): 1245-1256.
14 ZULFIQAR F, NAVARRO M, ASHRAF M, et al. Nano-fertilizer use for sustainable agriculture: advantages and limitations[J]. Plant Science, 2019, 289: 110270. DOI: 10.1016/j.plantsci.2019.110270
doi: 10.1016/j.plantsci.2019.110270
15 蒋玉根,邵赛男,蒋沈悦,等.施肥对连作大棚蔬菜产量、土壤养分和微生物种群的影响[J].浙江农业科学,2020,61(5):927-931. DOI:10.16178/j.issn.0528-9017.20200537
JIANG Y G, SHAO S N, JIANG S Y, et al. Influence of fertilization on the production of greenhouse vegetables, soil nutrient and microbial species group[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(5): 927-931. (in Chinese with English abstract)
doi: 10.16178/j.issn.0528-9017.20200537
16 李秋杰,蒋细旺.我国花卉肥料的现状及分析[J].长江大学学报(自然科学版),2012,9(3):11-14. DOI:10.3969/j.issn.1673-1409(S).2012.03.004
LI Q J, JIANG X W. Current situation and analysis of flower fertilizers in my country[J]. Journal of Yangtze University (Natural Science Edition), 2012, 9(3): 11-14. (in Chinese)
doi: 10.3969/j.issn.1673-1409(S).2012.03.004
17 GOLAFSHAN N, VORNDRAN E, ZAHARIEVSKI S, et al. Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model[J]. Biomaterials, 2020, 261: 120302. DOI: 10.1016/j.biomaterials.2020.120302
doi: 10.1016/j.biomaterials.2020.120302
18 MURCIA D H, GENEDY M, TAHA M M R. Examining the significance of infill printing pattern on the anisotropy of 3D printed concrete[J]. Construction and Building Materials, 2020, 262: 120559. DOI: 10.1016/j.conbuildmat.2020.120559
doi: 10.1016/j.conbuildmat.2020.120559
19 李彬,顾海,张捷,等.固相含量对单螺杆挤出式3D打印PLZT陶瓷浆料流动性能的影响[J].机械工程材料,2020,44(11):111-114. DOI:10.11973/jxgccl202010020
LI B, GU H, ZHANG J, et al. Effect of solid content on PLZT ceramic slarry flowability in 3D printing by single screw extrusion mode[J]. Materials for Mechanical Engineering, 2020, 44(11): 111-114. (in Chinese with English abstract)
doi: 10.11973/jxgccl202010020
20 FANOUS M, GOLD S, HIRSCH S, et al. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance[J]. European Journal of Phar-maceutical Sciences, 2020, 155: 105558. DOI: 10.1016/j.ejps.2020.105558
doi: 10.1016/j.ejps.2020.105558
21 朱亮亮.3D打印:设计革命与伦理反思[J].装饰,2018(5):140-141. DOI:10.16272/j.cnki.cn11-1392/j.2018.05.037
ZHU L L. 3D printing: design revolution and ethical reflection[J]. Zhuangshi, 2018(5): 140-141. (in Chinese)
doi: 10.16272/j.cnki.cn11-1392/j.2018.05.037
22 American Society for Testing and Materials (ASTM). Standard Terminology for Additive Manufacturing Technology [S]. West Conshohocken, PA, USA: ASTM International, 2012.
23 KIRCHMAJER D M, GORKIN R, PANHUIS M I H. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing[J]. Journal of Materials Chemistry B, 2015, 3(20): 4105-4117. DOI: 10.1039/c5tb00393h
doi: 10.1039/c5tb00393h
24 OZBOLAT I T, HOSPODIUK M. Current advances and future perspectives in extrusion-based bioprinting[J]. Bioma-terials, 2016, 76: 321-343. DOI: 10.1016/j.biomaterials.2015.10.076
doi: 10.1016/j.biomaterials.2015.10.076
25 KUO C C, QIN H T, CHENG Y L, et al. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying[J]. Food Hydrocolloids, 2020, 111: 106262. DOI: 10.1016/j.foodhyd.2020.106262
doi: 10.1016/j.foodhyd.2020.106262
26 MOHAMMADI N, SHARIATMADARI H, KHADEMI H, et al. Coating of sepiolite-chitosan nanocomposites onto urea increases nitrogen availability and its use efficiency in maize[J]. Archives of Agronomy and Soil Science, 2020, 66(7): 884-896. DOI: 10.1080/03650340.2019.1643842
doi: 10.1080/03650340.2019.1643842
27 薛海龙,许文年,刘大翔,等.几种聚合材料包膜尿素的研制及评价方法研究[J].中国农业科技导报,2017,19(4):92-99. DOI:10.13304/j.nykjdb.2016.624
XUE H L, XU W N, LIU D X, et al. Studies on preparation and evaluation method of several polymeric materials coated urea[J]. Journal of Agricultural Science and Technology, 2017, 19(4): 92-99. (in Chinese with English abstract)
doi: 10.13304/j.nykjdb.2016.624
28 何其辉,谭长银,曹雪莹,等.肥料对土壤重金属有效态及水稻幼苗重金属积累的影响[J].环境科学研究,2018,31(5):942-951. DOI:10.13198/j.issn.1001-6929.2018.01.18
HE Q H, TAN C Y, CAO X Y, et al. Effects of fertilizer on the availability of heavy metals in soil and its accumulation in rice seedling[J]. Research of Environmental Sciences, 2018, 31(5): 942-951. (in Chinese with English abstract)
doi: 10.13198/j.issn.1001-6929.2018.01.18
29 MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8): 773-785. DOI: 10.1038/nbt.2958
doi: 10.1038/nbt.2958
30 CHANG C C, BOLAND E D, WILLIAMS S K, et al. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2011, 98B(1): 160-170. DOI: 10.1002/jbm.b.31831
doi: 10.1002/jbm.b.31831
31 MÜLLER M, FISCH P, MOLNAR M, et al. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering[J]. Materials Science and Engineering C, 2020, 108: 110510. DOI: 10.1016/j.msec.2019.110510
doi: 10.1016/j.msec.2019.110510
32 SAGLE L B, ZHANG Y J, LITOSH V A, et al. Investigating the hydrogen-bonding model of urea denaturation[J]. Journal of the American Chemical Society, 2009, 131(26): 9304-9310. DOI: 10.1021/ja9016057
doi: 10.1021/ja9016057
33 余振宇,姜绍通,潘丽军,等.芋头浆的流变特性[J].食品科学,2015,36(7):36-40. DOI:10.7506/spkx1002-6630-201507007
YU Z Y, JIANG S T, PAN L J, et al. Rheological properties of taro pulp[J]. Food Science, 2015, 36(7): 36-40. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-201507007
34 LIU Z B, ZHANG M, BHANDARI B, et al. Impact of rheological properties of mashed potatoes on 3D printing[J]. Journal of Food Engineering, 2018, 220: 76-82. DOI: 10.1016/j.jfoodeng.2017.04.017
doi: 10.1016/j.jfoodeng.2017.04.017
35 KIM H, RYU K H, BAEK D, et al. 3D printing of polyethylene terephthalate glycol-sepiolite composites with nanoscale orientation[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23453-23463. DOI: 10.1021/acsami.0c03830
doi: 10.1021/acsami.0c03830
36 WONG R B K, LELIEVRE J. Viscoelastic behavior of wheat starch pastes[J]. Rheologica Acta, 1981, 20(3): 299-307.
37 COSTAKIS W J, RUESCHHOFF L M, DIAZ-CANO A I, et al. Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions[J]. Journal of the European Ceramic Society, 2016, 36(14): 3249-3256. DOI: 10.1016/j.jeurceramsoc.2016.06.002
doi: 10.1016/j.jeurceramsoc.2016.06.002
38 ZHU S C, STIEGER M A, VAN DER GOOT A J, et al. Extrusion-based 3D printing of food pastes: correlating rheological properties with printing behavior[J]. Innovative Food Science & Emerging Technologies, 2019, 58: 102214. DOI: 10.1016/j.ifset.2019.102214
doi: 10.1016/j.ifset.2019.102214
39 WILSOB A, ANUKIRUTHIKA T, MOSES J A, et al. Customized shapes for chicken meat-based products: feasibility study on 3D-printed nuggets[J]. Food and Bioprocess Tech-nology, 2020, 13(11): 1968-1983. DOI: 10.1007/s11947-020-02537-3
doi: 10.1007/s11947-020-02537-3
40 SAHA D, BHATTACHARYA S. Hydrocolloids as thickening and gelling agents in food: a critical review[J]. Journal of Food Science & Technology, 2010, 47(6): 587-597. DOI: 10.1007/s13197-010-0162-6
doi: 10.1007/s13197-010-0162-6
41 SWORN G. Xanthan Gum, Food Stabilizers, Thickeners and Gelling Agents[M]. Oxford, UK: Blackwell Publishing Ltd, 2010: 325-342.
42 WANG Y F, LIU M Z, NI B L, et al. κ-carrageenan-codium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anti-compaction properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1413-1422. DOI: 10.1021/ie2020526
doi: 10.1021/ie2020526
43 FISCHER P, WINDHAB E J. Rheology of food materials[J]. Current Opinion in Colloid & Interface Science, 2011, 16(1): 36-40. DOI: 10.1016/j.cocis.2010.07.003
doi: 10.1016/j.cocis.2010.07.003
44 CHAISAWANG M, SUPHANTHARIKA M. Effects of guar gum and xanthan gum additions on physical and rheological properties of cationic tapioca starch[J]. Carbohydrate Polymers, 2005, 61(3): 288-295. DOI: 10.1016/j.carbpol.2005.04.002
doi: 10.1016/j.carbpol.2005.04.002
45 GAO T, GILLISPIE G J, COPUS J S, et al. Optimization of gelatin-alginate composite bioink printability using rheological parameters: a systematic approach[J]. Biofabrication, 2018, 10(3): 034106. DOI: 10.1088/1758-5090/aacdc7
doi: 10.1088/1758-5090/aacdc7
46 HUANG M S, ZHANG M, BHANDARI B, et al. Improving the three-dimensional printability of taro paste by the addition of additives[J]. Journal of Food Process Engineering, 2020, 43(5): e13090. DOI: 10.1111/jfpe.13090
doi: 10.1111/jfpe.13090
47 ATTALLA R, LING C, SELVAGANAPATHY P. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications[J]. Biomedical Microdevices, 2016, 18(1): 17. DOI: 10.1007/s10544-016-0042-6
doi: 10.1007/s10544-016-0042-6
48 YANG F L, ZHANG M, BHANDARI B, et al. Investigation on lemon juice gel as food material for 3D printing and optimization of printing parameters[J]. LWT-Food Science and Technology, 2018, 87: 67-76. DOI: 10.1016/j.lwt.2017.08.054
doi: 10.1016/j.lwt.2017.08.054
49 杨皓天,万腾.秸秆炭基肥料制粒机机械结构与性能优化设计[J].农机化研究,2022,44(11):253-258. DOI:10.13427/j.cnki.njyi.2022.11.009
YANG H T, WAN T. Mechanical structure and performance optimization design of straw carbon materials fertilizer granulator[J]. Journal of Agricultural Mechanization Research, 2022, 44(11): 253-258. (in Chinese with English abstract)
doi: 10.13427/j.cnki.njyi.2022.11.009
50 NAZ M Y, SULAIMAN S A. Slow release coating remedy for nitrogen loss from conventional urea: a review[J]. Journal of Controlled Release, 2016, 225: 109-120. DOI: 10.1016/j.jconrel.2016.01.037
doi: 10.1016/j.jconrel.2016.01.037
51 KHALED S A, BURLEY J C, ALEXANDER M R, et al. 3D printing of tablets containing multiple drugs with defined release profiles[J]. International Journal of Pharmaceutics, 2015, 494(2): 643-650. DOI: 10.1016/j.ijpharm.2015.07.067
doi: 10.1016/j.ijpharm.2015.07.067
52 DU C W, ZHOU J M, SHAVIV A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers[J]. Journal of Polymers and the Environment, 2006, 14(3): 223-230. DOI: 10.1007/s10924-006-0025-4
doi: 10.1007/s10924-006-0025-4
53 RANGARAHJAN S, QI G, VENKATARAMAN N, et al. Powder processing, rheology, and mechanical properties of feedstock for fused deposition of Si3N4 ceramics[J]. Journal of the American Ceramic Society, 2000, 83(7): 1663-1669. DOI: 10.1111/j.1151-2916.2000.tb01446.x
doi: 10.1111/j.1151-2916.2000.tb01446.x
No related articles found!