Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (2): 216-226    DOI: 10.3785/j.issn.1008-9209.2021.10.141
资源利用与环境保护     
基于地理信息系统和遥感技术的山核桃产区林地土壤质量退化评价
王罗其1,2(),傅伟军2,3,叶正钱1,2,马闪闪4,丁立忠4,赵科理1,2()
1.浙江省土壤污染生物修复重点实验室(浙江农林大学),杭州 311300
2.浙江农林大学环境与资源学院,杭州 311300
3.浙江省森林生态系统碳循环与固碳减排重点实验室(浙江农林大学),杭州 311300
4.临安区农林技术推广中心,杭州 311300
Evaluation of soil quality degradation in Chinese hickory production area based on geographic information system and remote sensing technologies
Luoqi WANG1,2(),Weijun FU2,3,Zhengqian YE1,2,Shanshan MA4,Lizhong DING4,Keli ZHAO1,2()
1.Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province (Zhejiang A&F University), Hangzhou 311300, China
2.College of Environmental and Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China
3.Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration of Zhejiang Province (Zhejiang A&F University), Hangzhou 311300, China
4.Agricultural and Forestry Technology Extension Center of Lin’an, Hangzhou 311300, China
 全文: PDF(5757 KB)   HTML
摘要:

为全面提升山核桃林地土壤质量的整体水平,促进山核桃产业可持续健康发展,本研究以浙江临安典型山核桃产区为研究区,以植被覆盖度、坡度、土壤肥力和土壤污染情况作为土壤退化评价指标,采用模糊逻辑综合评价方法结合地理信息系统(geographic information system, GIS)、全球定位系统(global positioning system, GPS)、遥感(remote sensing, RS)的“3S”技术,进行林地土壤质量退化程度的空间分析,并提出相应管理意见。结果表明:研究区林地土壤肥力以中度退化为主,仅有1.65%的区域处在高度退化状态,主要集中于龙岗镇北部和清凉峰镇西南部;林地土壤污染整体处于较低水平,仅有6.35%的区域处于中高度以上污染退化水平,主要集中于岛石镇和湍口镇;山核桃林地土壤综合退化程度主要以中低度退化为主,占林地面积的66.50%,高度退化、中高度退化、中度退化和低度退化区域分别占林地面积的0.15%、2.44%、27.45%和3.46%,其中高度退化林地主要分布在清凉峰镇西南部和龙岗镇西部。本研究结果将为山核桃林地土壤质量提升和山核桃产业可持续发展提供理论依据。

关键词: 土壤质量退化山核桃空间异质性模糊综合评价    
Abstract:

In order to comprehensively improve the soil quality of Chinese hickory (Carya cathayensis Sarg.) plantation and promote the sustainable and healthy development of hickory industry, a typical C. cathayensis plantation area (Lin’an District, Zhejiang Province) was selected for this study. Fractional vegetation cover, slope, soil fertility and soil pollution condition as evaluation indexes for soil degradation were considered. The spatial analysis of soil degradation degree for Chinese hickory plantation was carried out by fuzzy logic comprehensive evaluation method combined with geographic information system (GIS), global positioning system (GPS), and remote sensing (RS) technologies, and the corresponding management suggestions were put forward. The results showed that the soil fertility of plantation in the study area mainly belonged to the moderate degradation, and only 1.65% of the area was in a high degradation, which was centered in the north of Longgang Town and the southwest of Qingliangfeng Town. The overall soil pollution of the hickory plantation area was at a low level, only 6.35% of which was at a moderate to high degradation, mainly distributed in Daoshi and Tuankou towns. The comprehensive soil degradation of the hickory plantation mainly belonged to moderate and low degradation degrees, accounting for 66.50% of the study area. The high, moderate to high, moderate and low degradation areas accounted for 0.15%, 2.44%, 27.45% and 3.46% of the study area, respectively. The highly degraded hickory plantation was mainly distributed in the southwest of Qingliangfeng Town and the west of Longgang Town. The results will provide a theoretical basis for improving soil quality and the sustainable development of hickory property.

Key words: soil quality degradation    Chinese hickory    spatial heterogeneity    fuzzy comprehensive evaluation
收稿日期: 2021-10-14 出版日期: 2022-04-29
CLC:  S 158.1  
基金资助: 浙江省基础公益研究计划(LY20C160004);杭州市临安区《“临安山核桃”亮牌战略三年攻坚行动方案》项目
通讯作者: 赵科理     E-mail: 2019103011016@stu.zafu.edu.cn;kelizhao@zafu.edu.cn
作者简介: 王罗其(https://orcid.org/0000-0003-3345-4239),E-mail:2019103011016@stu.zafu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王罗其
傅伟军
叶正钱
马闪闪
丁立忠
赵科理

引用本文:

王罗其,傅伟军,叶正钱,马闪闪,丁立忠,赵科理. 基于地理信息系统和遥感技术的山核桃产区林地土壤质量退化评价[J]. 浙江大学学报(农业与生命科学版), 2022, 48(2): 216-226.

Luoqi WANG,Weijun FU,Zhengqian YE,Shanshan MA,Lizhong DING,Keli ZHAO. Evaluation of soil quality degradation in Chinese hickory production area based on geographic information system and remote sensing technologies. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(2): 216-226.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.10.141        https://www.zjujournals.com/agr/CN/Y2022/V48/I2/216

图1  临安山核桃林地土壤采样点空间分布
养分 NutrientXaXbXc

碱解氮

Alkali-hydrolyzable N/(mg/kg)

60.0120.0180.0

有效磷

Available P/(mg/kg)

5.010.020.0

速效钾

Available K/(mg/kg)

50.080.0120.0
pH4.55.56.5

有机质

Organic matter/(g/kg)

10.020.030.0
表1  土壤养分分级标准[21]

元素

Element

风险筛选值 Risk screening value
pH≤5.55.5<pH≤6.56.5<pH≤7.5pH>7.5
Cd0.30.30.30.6
Cu50.050.0100.0100.0
Ni60.070.0100.0190.0
Pb70.090.0120.0170.0
Cr150.0150.0200.0250.0
Zn200.0200.0250.0300.0
表2  土壤重金属污染评价标准[23] (mg/kg)
图2  临安山核桃林地植被覆盖度(FVC)分级
图3  临安山核桃林地坡度分级

指标

Index

最小值

Min

中位数

Median

最大值

Max

平均值

Mean

标准差

Standard

deviation

变异系数

Coefficient

of variation/%

偏度

Skewness

峰度

Kurtosis

K-S
pH4.195.037.135.220.61711.81.23(0.18)1.22(2.69)0.000(0.074)
有机质 Organic matter/(g/kg)9.7030.7764.1031.601.0734.00.563.060.392

碱解氮

Alkali-hydrolyzable N/(mg/kg)

56.61155.83268.97155.4042.0827.00.282.880.728
有效磷 Available P/(mg/kg)1.376.3773.2813.3116.13121.02.17(0.15)4.56(2.03)0.000(0.375)
速效钾 Available K/(mg/kg)18.9077.50203.3685.3437.8344.00.943.650.077
表3  山核桃林地土壤养分含量描述性统计分析

指标

Index

低度退化

Low degradation

(>2.7)

中低度退化

Low to moderate degradation(>2.1~2.7)

中度退化

Moderate degradation

(>1.5~2.1)

中高度退化

Moderate to high

degradation(>0.9~1.5)

高度退化

High degradation

(≤0.9)

点位数

Number of points

01795743

百分比

Percentage/%

09.0250.2639.071.65
表4  土壤肥力退化程度分级结果
图4  临安山核桃林地土壤肥力退化空间分布

重金属

Heavy

metal

最小值

Min/

(mg/kg)

最大值

Max/

(mg/kg)

平均值

Mean/

(mg/kg)

标准差

Standard

deviation/

(mg/kg)

变异系数

Coefficient

of variation/%

偏度

Skewness

峰度

Kurtosis

K-S

背景值1)

Background

value1)/

(mg/kg)

标准值2)

Standard

value2)/

(mg/kg)

Pb5.71116.1028.3815.9756.302.98(-1.11)13.60(6.95)0.000(0.06)30.4670.00
Cd0.022.420.340.40120.202.19(0.145)5.18(2.5)0.000(0.14)0.130.30
Cu0.18133.8039.8426.6066.701.014.330.12030.5450.00
Zn28.04288.4084.2239.9747.502.21(-0.14)7.36(3.12)0.000(0.85)107.79200.00
Cr6.36123.4056.4822.1239.20-0.332.690.12095.91150.00
Ni2.2671.4028.1713.6948.600.322.990.51836.4860.00
表5  山核桃林地土壤重金属含量描述性统计分析

指标

Index

高度退化

High degradation

(>3)

中高度退化

Moderate to high

degradation(>2~3)

中度退化

Moderate degradation

(>1~2)

中低度退化

Low to moderate

degradation(>0.7~1)

低度退化

Low degradation

(≤0.7)

点位数

Number of points

2102630121

百分比

Percentage/%

1.065.2913.7615.8764.02
表6  土壤污染退化程度分级结果
图5  临安山核桃林地土壤污染退化空间分布

一级指标

First grade index

一级指标权重

Weight of the first

grade index

二级指标

Second grade index

二级指标权重

Weight of the second

grade index

综合权重

Comprehensive weight

土壤肥力综合指数

ISFI

0.406pH0.2600.105 5
有机质 Organic matter0.2400.097 4
有效磷 Available P0.1600.064 9
速效钾 Available K0.1600.064 9

碱解氮

Alkali-hydrolyzable N

0.1800.073 1

土壤污染综合指数

ISPI

0.281Cd0.1900.053 3
Cu0.1900.053 3
Zn0.1550.043 5
Pb0.1550.043 5
Ni0.1550.043 5
Cr0.1550.043 5
坡度 Slope0.179坡度 Slope0.1790.179 0
植被覆盖度 FVC0.134植被覆盖度 FVC0.1340.134 0
表7  基于层次分析法的土壤退化指标权重
图6  临安山核桃林地土壤综合退化空间分布

指标

Index

高度退化

High degradation

(>0.80~1.00)

中高度退化

Moderate to high

degradation(>0.60~0.80)

中度退化

Moderate degradation

(>0.45~0.60)

中低度退化

Low to moderate

degradation(>0.20~0.45)

低度退化

Low degradation

(≤0.20)

面积

Area/km2

0.457.3282.35199.5010.38

百分比

Percentage/%

0.152.4427.4566.503.46
表8  土壤综合退化程度分级结果
1 马闪闪,赵科理,丁立忠,等.临安市不同山核桃产区土壤肥力状况的差异性研究[J].浙江农林大学学报,2016,33(6):953-960. DOI:10.11833/j.issn.2095-0756.2016.06.005
MA S S, ZHAO K L, DING L Z, et al. Soil fertility in Carya cathayensis orchards for major towns of Lin’an City, China[J]. Journal of Zhejiang A&F University, 2016, 33(6): 953-960. (in Chinese with English abstract)
doi: 10.11833/j.issn.2095-0756.2016.06.005
2 雷亦晨.土壤化学性质与山核桃生长及干腐病发生的关系[D].杭州:浙江农林大学,2018:31-38.
LEI Y C. Relationship between soil chemical properties and canker disease of Carya cathayensis [D]. Hangzhou: Zhejiang A&F University, 2018: 31-38. (in Chinese with English abstract)
3 路玉林,戴圣潜,李运怀,等.安徽宁国市山核桃农业地质环境的因子分析研究[J].土壤通报,2006(6):1203-1206. DOI:10.19336/j.cnki.trtb.2006.06.037
LU Y L, DAI S Q, LI Y H, et al. Factor analysis of agro-geological environment of Carya cathayensis plantation in Ningguo City, Anhui Province[J]. Chinese Journal of Soil Science, 2006(6): 1203-1206. (in Chinese with English abstract)
doi: 10.19336/j.cnki.trtb.2006.06.037
4 裘希雅,蒋玉根,陈瑛,等.不同土壤环境对山核桃品质的影响[J].浙江农业科学,2014(4):588-591. DOI:10.16178/j.issn.0528-9017.2014.04.035
QIU X Y, JIANG Y G, CHEN Y, et al. Effects of different soil environment on the quality of pecan[J]. Journal of Zhejiang Agricultural Sciences, 2014(4): 588-591. (in Chinese)
doi: 10.16178/j.issn.0528-9017.2014.04.035
5 哈凯,丁庆龙,门明新,等.山地丘陵区土地利用分布及其与地形因子关系:以河北省怀来县为例[J].地理研究,2015,34(5):909-921. DOI:10.11821/dlyj201505010
HA K, DING Q L, MEN M X, et al. Spatial distribution of land use and its relationship with terrain factors in hilly area[J]. Geographical Research, 2015, 34(5): 909-921. (in Chinese with English abstract)
doi: 10.11821/dlyj201505010
6 HILL J, STELLMES M, UDELHOVEN T, et al. Mediterranean desertification and land degradation: mapping related land use change syndromes based on satellite observations[J]. Global and Planetary Change, 2008, 64: 146-157. DOI:10.1016/j.gloplacha.2008.10.005
doi: 10.1016/j.gloplacha.2008.10.005
7 张红桔,赵科理,叶正钱,等.典型山核桃产区土壤重金属空间异质性及其风险评价[J].环境科学,2018,39(6):2893-2903. DOI:10.13227/j.hjkx.201707115
ZHANG H J, ZHAO K L, YE Z Q, et al. Spatial variation of heavy metals in soils and its ecological risk evaluation in a typical Carya cathayensis production area[J]. Environmental Science, 2018, 39(6): 2893-2903. (in Chinese with English abstract)
doi: 10.13227/j.hjkx.201707115
8 栗晓禹,黄兴召,王雪军,等.基于Landsat TM遥感数据的山核桃产量预测:以浙江临安市为例[J].林业资源管理,2017(4):131-134. DOI:10.13466/j.cnki.lyzygl.2017.04.020
LI X Y, HUANG X Z, WANG X J, et al. Estimation of hickory yield based on Landsat TM remote sensing data[J]. Forest Resources Management, 2017(4): 131-134. (in Chinese with English abstract)
doi: 10.13466/j.cnki.lyzygl.2017.04.020
9 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:146-226.
LU R K. Methods for Agrochemical Analysis of Soil[M]. Beijing: China Agricultural Science and Technology Press, 2000: 146-226. (in Chinese)
10 杜子涛,杨小明,颜树强,等.奈曼旗土地退化遥感监测研究[J].农业工程学报,2012,28(3):154-161. DOI:10.3969/j.issn.1002-6819.2012.03.027
DU Z T, YANG X M, YAN S Q, et al. Study on land degradation monitoring in Naiman County using remote sensing[J]. Transactions of the CSAE, 2012, 28(3): 154-161. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2012.03.027
11 魏洪斌.基于土地整治的耕地质量评价与提升研究[D].北京:中国地质大学,2015:56-78.
WEI H B. Study on cultivated land quality evaluation and promotion based on land consolidation[D]. Beijing: China University of Geosciences, 2015: 56-78. (in Chinese with English abstract)
12 PRASAD R, GANGAIAH B, AIPE K C. Effect of crop residue management in a rice-wheat cropping system on growth and yield of crops and on soil fertility[J]. Experimental Agriculture, 1999, 35(4): 427-435. DOI:10.1017/s001447979935403x
doi: 10.1017/s001447979935403x
13 LIU R M, XU F, YU W W, et al. Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics[J]. Environmental Monitoring & Assessment, 2016, 188(2): 1-10. DOI:10.1007/s10661-016-5130-9
doi: 10.1007/s10661-016-5130-9
14 刘师师,秦建新,麻战洪,等.湖南典型贫困区土地生态状况评估与障碍因子诊断:以平江县为例[J].地质学刊,2018,42(4):694-700. DOI:10.3969/j.issn.1674-3636.2018.04.021
LIU S S, QIN J X, MA Z H, et al. Evaluation of land ecological status and diagnosis of obstacle factors in typical poor areas of Hunan Province: a case study of Pingjiang County[J]. Journal of Geology, 2018, 42(4): 694-700. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-3636.2018.04.021
15 李昂.西北风蚀区植被覆盖防治土壤退化的机理及研究进展[J].甘肃高师学报,2015,20(2):32-35. DOI:10.3969/j.issn.1008-9020.2015.02.010
LI A. Research progress and mechanism on amending soil degradation using vegetation cover in wind erosion region of Northwest China[J]. Journal of Gansu Normal Colleges, 2015, 20(2): 32-35. (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-9020.2015.02.010
16 TRIPATHY G K, GHOSH T K, SHAH S D. Monitoring of desertification process in Karnataka State of India using multi-temporal remote sensing and ancillary information using GIS[J]. International Journal of Remote Sensing, 1996, 17(12): 2243-2257. DOI:10.1080/01431169608948771
doi: 10.1080/01431169608948771
17 武爽,冯险峰,孔玲玲,等.气候变化及人为干扰对西藏地区草地退化的影响研究[J].地理研究,2021,40(5):1265-1279. DOI:10.11821/dlyj020200594
WU S, FENG X F, KONG L L, et al. Effects of climate variation and human activities on grassland degradation in Tibet[J]. Geographical Research, 2021, 40(5): 1265-1279. (in Chinese with English abstract)
doi: 10.11821/dlyj020200594
18 GUTMAN G, IGNATOV A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J]. International Journal of Remote Sensing, 1998, 19(8): 1533-1543. DOI:10.0180/014311698215333
doi: 10.0180/014311698215333
19 魏亚飞,王辉,谭帅,等.套种对南方红壤坡耕地经济果园土壤团聚体分布及稳定性的影响[J].应用生态学报,2020,31(5):1617-1624. DOI:10.13287/j.1001-9332.202005.026
WEI Y F, WANG H, TAN S, et al. Effects of interplanting on soil aggregate distribution and stability in economic orchard at hilly slope red soil of southern China[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1617-1624. (in Chinese with English abstract)
doi: 10.13287/j.1001-9332.202005.026
20 汤国安,宋佳.基于DEM坡度图制图中坡度分级方法的比较研究[J].水土保持学报,2006,20(2):157-160. DOI:10.3321/j.issn:1009-2242.2006.02.038
TNAG G A, SONG J. Comparison of slope classification methods in slope mapping from DEMs[J]. Journal of Soil and Water Conservation, 2006, 20(2): 157-160. (in Chinese with English abstract)
doi: 10.3321/j.issn:1009-2242.2006.02.038
21 全国土壤普查办公室.中国土壤[M].北京:中国农业出版社,1998. DOI:10.15385/yb.miracle.1998
The Office of Chinese Soil General Survey. Soils of China[M]. Beijing: Chinese Agriculture Press, 1998. (in Chinese)
doi: 10.15385/yb.miracle.1998
22 濮阳雪华,苟清平,王春春,等.陕北黄土区不同微地形土壤养分特征研究[J].西北林学院学报,2019,34(3):37-42. DOI:10.3969/j.issn.1001-7461.2019.03.06
PUYANG X H, GOU Q P, WANG C C, et al. Characteristics of soil nutrient in different micro-topography in Loess Region of Northern Shaanxi Province[J]. Journal of Northwest Forestry University, 2019, 34(3): 37-42. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7461.2019.03.06
23 中华人民共和国生态环境部. 土壤环境质量 农用地土壤污染风险管控标准(试行): [S].北京:中国环境出版集团,2018. DOI:10.17660/th2019/74.2.4
Ministry of Ecology and Environment of the People’s Republic of China. Soil Environmental Quality-Risk Control Standard for Soil Contamination of Agricultural Land:GB 15618—2018 [S]. Beijing: China Environmental Publishing Group, 2018. (in Chinese)
doi: 10.17660/th2019/74.2.4
24 GAO Z Q, FU W J, ZHANG M J, et al. Potentially hazardous metals contamination in soil-rice system and its spatial variation in Shengzhou City, China[J]. Journal of Geochemical Exploration, 2016, 167: 62-69. DOI:10.1016/j.gexplo.2016.05.006
doi: 10.1016/j.gexplo.2016.05.006
25 王小燕.土地利用变化驱动下的土壤侵蚀时空动态分析[D].西安:西北大学,2015:52-64.
WANG X Y. Spatio-temporal dynamic analysis driven by land use/cover change of soil erosion[D]. Xi’an: Northwest University, 2015: 52-64. (in Chinese with English abstract)
26 黄伟娇.基于GIS的杭州市特色经济作物土地适宜性评价[D].福州:福建农林大学,2011:59-69.
HUANG W J. Evaluation of land suitability for cash crops in Hangzhou based on GIS[D]. Fuzhou: Fujian Agriculture and Forestry University, 2011: 59-69. (in Chinese with English abstract)
27 赵杰,罗志军,赵越,等.环鄱阳湖区农田土壤重金属空间分布及污染评价[J].环境科学学报,2018,38(6):2475-2485. DOI:10.13671/j.hjkxxb.2018.0051
ZHAO J, LUO Z J, ZHAO Y, et al. Spatial distribution and pollution assessment of heavy metals in farmland soils in Poyang Lake area[J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2475-2485. (in Chinese with English abstract)
doi: 10.13671/j.hjkxxb.2018.0051
28 中华人民共和国农业部. 耕地地力调查与质量评价技术规程: [S].北京:中国农业出版社,2008. DOI:10.3969/j.issn.1003-9139.2018.03.002
Ministry of Agriculture of the People’s Republic of China. Rules for Soil Quality Survey and Assessment: NY/T 1634—2008 [S]. Beijing: Chinese Agriculture Press, 2008. (in Chinese)
doi: 10.3969/j.issn.1003-9139.2018.03.002
29 闫一凡,刘建立,张佳宝.耕地地力评价方法及模型分析[J].农业工程学报,2014,30(5):204-210. DOI:10.3969/j.issn.1002-6819.2014.05.026
YAN Y F, LIU J L, ZHANG J B. Evaluation method and model analysis for productivity of cultivated land[J]. Transactions of the CSAE, 2014, 30(5): 204-210. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2014.05.026
30 许文龙.皇甫川流域侵蚀产沙特征及土地退化研究[D].西安:中国科学院大学,2019:52-56.
XU W L. Land degradation assessment and sediment yield in the Huangfuchuan basin[D]. Xi’an: University of Chinese Academy of Sciences, 2019: 52-56. (in Chinese with English abstract)
31 张璐璐,贾桂民,叶建丰,等.浙江临安山核桃干腐病发生发展规律[J].浙江农林大学学报,2013,30(1):148-152. DOI:10.11833/j.issn.2095-0756.2013.01.022
ZHANG L L, JIA G M, YE J F, et al. Frequency of Carya cathayensis canker disease in Lin’an City, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2013, 30(1): 148-152. (in Chinese with English abstract)
doi: 10.11833/j.issn.2095-0756.2013.01.022
32 倪幸,窦春英,丁立忠,等.有机物料对山核桃林地土壤的培肥改良效果[J].植物营养与肥料学报,2018,24(5):1266-1275. DOI:10.11674/zwyf.17389
NI X, DOU C Y, DING L Z, et al. Organic materials improved the soil fertility in Carya cathayensis forest lands[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(5): 1266-1275. (in Chinese with English abstract)
doi: 10.11674/zwyf.17389
33 张芸萍,易克,谢春凤,等.云南富源红壤烟区酸碱度空间分布及其与主要养分关系研究[J].扬州大学学报(农业与生命科学版),2020,41(5):113-118. DOI:10.16872/j.cnki.1671-4652.2020.05.019
ZHANG Y P, YI K, XIE C F, et al. Spatial distribution and the relationship between pH and main nutrients in tobacco growing red soil in Fuyuan County, Yunnan Province[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(5): 113-118. (in Chinese with English abstract)
doi: 10.16872/j.cnki.1671-4652.2020.05.019
34 赵伟明,王艳艳,马嘉伟,等.临安山核桃林地土壤磷素状况及其淋失风险分析[J].浙江农业学报,2014,26(1):154-158. DOI:10.3969/j.issn.1004-1524.2014.01.28
ZHAO W M, WANG Y Y, MA J W, et al. Phosphorus status and its leaching loss risks in the soils of Chinese hickory orchards in Lin’an City, Zhejiang Province[J]. Acta Agriculturae Zhejiangensis, 2014, 26(1): 154-158. (in Chinese with English abstract)
doi: 10.3969/j.issn.1004-1524.2014.01.28
35 ZHAO K L, ZHANG L Y, DONG J Q, et al. Risk assessment, spatial patterns and source apportionment of soil heavy metals in a typical Chinese hickory plantation region of southeastern China[J]. Geoderma, 2020, 360: 114011. DOI:10.1016/j.geoderma.2019.114011
doi: 10.1016/j.geoderma.2019.114011
36 戴巍,赵科理,高智群,等.典型亚热带森林生态系统碳密度及储量空间变异特征[J].生态学报,2017,37(22):7528-7538. DOI:10.5846/stxb201609271947
DAI W, ZHAO K L, GAO Z Q, et al. Spatial variation characteristics of carbon density and storage in forest ecosystems in a typical subtropical region[J]. Acta Ecologica Sinica, 2017, 37(22): 7528-7538. (in Chinese with English abstract)
doi: 10.5846/stxb201609271947
[1] 吴家森1,2, 张金池1*, 黄坚钦2, 童志鹏3, 叶晶2, 顾光同4. 浙江省临安市山核桃产区林地土壤有机碳分布特征[J]. 浙江大学学报(农业与生命科学版), 2013, 39(4): 413-420.
[2] 江振蓝, 荆长伟, 李丹, 虞湘, 吴嘉平. 运用Mann‐Kendall 方法探究地表植被变化趋势及其对地形因子的响应机制——— 以太湖苕溪流域为例[J]. 浙江大学学报(农业与生命科学版), 2011, 37(6): 684-692.
[3] 张慧敏 章明奎 . 城市复合土地利用系统中土壤磷素的积累和流失潜力的空间分异 [J]. 浙江大学学报(农业与生命科学版), 2008, 34(4): 453-460.
[4] 门宝辉  梁川. 属性识别方法在水资源系统可持续发展程度综合评价中的应用 [J]. 浙江大学学报(农业与生命科学版), 2002, 28(6): 675-678.
[5] 卢剑波  杨京平. 黄泥岭红壤小流域土壤的空间异质性与格局研究[J]. 浙江大学学报(农业与生命科学版), 2002, 28(1): 83-88.