Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (5): 543-556    DOI: 10.3785/j.issn.1008-9209.2021.09.231
综述     
脊椎动物神经管背-腹图式形成中形态素的调控作用综述
刘聪(),徐鹏飞()
浙江大学医学院,杭州 310058
Review on regulatory role of morphogens in the formation of dorsal-ventral pattern of vertebrate neural tube
Cong LIU(),Pengfei XU()
College of Medicine, Zhejiang University, Hangzhou 310058, China
 全文: PDF(4610 KB)   HTML
摘要:

脊椎动物中枢神经系统的形成依赖于胚胎早期神经管前-后、背-腹等图式的正确建立和后期细胞分化的精细调控。在神经管形成过程中,其前体细胞受到形态素浓度梯度的调控,沿着身体背-腹轴方向呈有规律的排列,其中最重要的2种形态素是骨形成蛋白(bone morphogenetic protein, BMP)和音猬因子(Sonic hedgehog, Shh)。从顶板分泌的BMP和从底板分泌的Shh在神经管中形成反向平行的浓度梯度,神经前体细胞在这些形态素的作用下获得其位置信息并逐渐决定其分化命运。本文系统总结了不同模式生物神经管发育的相关研究,着重综述了BMP和Shh这2种形态素在脊椎动物神经管背-腹图式形成中的重要作用。此外,对神经系统在体内发育机制的更深理解可为体外构建神经管类器官提供指导,因此,在本综述的最后,我们总结了神经管类器官培养的最新进展,并探讨了其未来发展策略。

关键词: 形态素神经管发育骨形成蛋白音猬因子类器官    
Abstract:

In vertebrates, the development of the central nervous system depends on the correct patterning of the neural tube along its anterior-posterior and dorsal-ventral axes in the early embryo as well as the underlying regulation of the cell differentiation. During the neural tube formation, the arrangement of the precursor cells depends on the regulation of different morphogen concentration gradients. The most important morphogens during the neural tube development are the bone morphogenetic protein (BMP) secreted from the roof plate and the Sonic hedgehog (Shh) secreted from the floor plate, which would form an antiparallel concentration gradient in the neural tube. These morphogen concentration gradients could further provide the positional information to the precursor cells and gradually determine their differentiation fate. In this paper, we summarized the process of neural tube development in different model organisms, focusing on the important role of two morphogens of BMP and Shh in the formation of dorsal-ventral pattern of the neural tube. Besides, a better understanding of the developmental mechanism of the nervous system in vivo would also provide some insights on the construction of neural tube organoids in vitro. Therefore, we also pointed out the latest progress of neural tube organoids and discussed the future perspective of this field.

Key words: morphogen    neural tube development    bone morphogenetic protein    Sonic hedgehog    organoid
收稿日期: 2021-09-23 出版日期: 2022-11-02
CLC:  Q 593.4  
基金资助: 国家重点研发计划项目(2018YFC1003203)
通讯作者: 徐鹏飞     E-mail: liucongcc@zju.edu.cn;pengfei_xu@zju.edu.cn
作者简介: 刘聪(https://orcid.org/0000-0002-9816-6564),E-mail:liucongcc@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘聪
徐鹏飞

引用本文:

刘聪,徐鹏飞. 脊椎动物神经管背-腹图式形成中形态素的调控作用综述[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 543-556.

Cong LIU,Pengfei XU. Review on regulatory role of morphogens in the formation of dorsal-ventral pattern of vertebrate neural tube. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 543-556.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.09.231        https://www.zjujournals.com/agr/CN/Y2022/V48/I5/543

图1  脊椎动物神经管背-腹图式BMP:骨形成蛋白;Shh:音猬因子;RP:顶板;FP:底板;dP1~dP6:背侧祖细胞域;dI1~dI6:背侧中间神经元群;p0~p3和pMN:腹侧祖细胞域;v0~v3和MN:腹侧中间神经元群。
图2  神经管的形成过程
图3  斑马鱼早期发育中BMP浓度梯度转换过程A.原肠胚初期,在背侧组织者分泌的BMP拮抗剂的作用下,胚胎中BMP信号形成从腹侧到背侧(从高到低)的浓度梯度。B.神经发生初期,由于胚胎的汇聚延伸运动,神经外胚层细胞迁移到背中线形成神经板,同时,神经板中线处开始内陷。此时,BMP信号在外侧浓度较高,在中线处浓度最低。C.当神经发生完成并形成神经管时,起源于原肠胚最腹侧的细胞迁移到神经管的最背侧,最终形成从背侧到腹侧(从高到低)的BMP浓度梯度。LV:侧视图;DV:背视图;AV:动物极视图;NP:神经板;NT:神经管(下同)。
图4  神经管顶板的形成过程A.神经板时期;B.早期神经嵴细胞时期;C.顶板形成时期。
图5  BMP信号转导P: 磷酸基团。
图6  Shh信号的产生、分泌和转导
图7  利用Shh浓度梯度体外指导前脑类器官的形成示意图A.利用转录激活因子样效应物核酸酶(TALEN)同源重组技术构建多西环素诱导表达SHH的H9细胞系(iSHH);B.将iSHH细胞聚集于类器官一端作为信号源以提供Shh浓度梯度;C.在Shh浓度梯度下诱导形成有多种细胞类型的前脑类器官,并再现了体内前脑的细胞图式,包括新皮质、外侧神经节隆起、内侧神经节隆起、下丘脑前叶和下丘脑腹后叶。
1 WOLPERT L. Positional information and the spatial pattern of cellular differentiation[J]. Journal of Theoretical Biology, 1969, 25(1): 1-47.
2 LE DRÉAU G, MARTÍ E. Dorsal-ventral patterning of the neural tube: a tale of three signals[J]. Developmental Neurobiology, 2012, 72(12): 1471-1481. DOI:10.1002/dneu.22015
doi: 10.1002/dneu.22015
3 UYGUR A, YOUNG J, HUYCKE T R, et al. Scaling pattern to variations in size during development of the vertebrate neural tube[J]. Developmental Cell, 2016, 37(2): 127-135. DOI:10.1016/j.devcel.2016.03.024
doi: 10.1016/j.devcel.2016.03.024
4 ZAGORSKI M, TABATA Y, BRANDENBERG N, et al. Decoding of position in the developing neural tube from antiparallel morphogen gradients[J]. Science, 2017, 356(6345): 1379-1383. DOI:10.1126/science.aam5887
doi: 10.1126/science.aam5887
5 DESSAUD E, YANG L L, HILL K, et al. Interpretation of the Sonic hedgehog morphogen gradient by a temporal adaptation mechanism[J]. Nature, 2007, 450(7170): 717-720. DOI:10.1038/nature06347
doi: 10.1038/nature06347
6 CHESNUTT C, BURRUS L W, BROWN A M C, et al. Coordinate regulation of neural tube patterning and proliferation by TGFβ and WNT activity[J]. Developmental Biology, 2004, 274(2): 334-347. DOI:10.1016/j.ydbio.2004.07.019
doi: 10.1016/j.ydbio.2004.07.019
7 LIU Y, HELMS A W, JOHNSON J E. Distinct activities of Msx1 and Msx3 in dorsal neural tube development[J]. Development, 2004, 131(5): 1017-1028. DOI:10.1242/dev.00994
doi: 10.1242/dev.00994
8 CEDERQUIST G Y, ASCIOLLA J J, TCHIEU J, et al. Specification of positional identity in forebrain organoids[J]. Nature Biotechnology, 2019, 37(4): 436-444. DOI:10.1038/s41587-019-0085-3
doi: 10.1038/s41587-019-0085-3
9 ZIMMERMAN L B, DE JESÚS-ESCOBAR J M, HARLAND R M. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4[J]. Cell, 1996, 86(4): 599-606. DOI:10.1016/s0092-8674(00)80133-6
doi: 10.1016/s0092-8674(00)80133-6
10 PICCOLO S, SASAI Y, LU B, et al. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4[J]. Cell, 1996, 86(4): 589-598. DOI:10.1016/s0092-8674(00)80132-4
doi: 10.1016/s0092-8674(00)80132-4
11 FAINSOD A, DEIβLER K, YELIN R, et al. The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4 [J]. Mechanisms of Development, 1997, 63(1): 39-50. DOI:10.1016/s0925-4773(97)00673-4
doi: 10.1016/s0925-4773(97)00673-4
12 LIU A M, NISWANDER L A. Bone morphogenetic protein signalling and vertebrate nervous system development[J]. Nature Reviews Neuroscience, 2005, 6(12): 945-954. DOI:10.1038/nrn1805
doi: 10.1038/nrn1805
13 NIKOLOPOULOU E, GALEA G L, ROLO A, et al. Neural tube closure: cellular, molecular and biomechanical mechanisms[J]. Development, 2017, 144(4): 552-566. DOI:10.1242/dev.145904
doi: 10.1242/dev.145904
14 TAWK M, ARAYA C, LYONS D A, et al. A mirror-symmetric cell division that orchestrates neuroepithelial morphogenesis[J]. Nature, 2007, 446(7137): 797-800. DOI:10.1038/nature05722
doi: 10.1038/nature05722
15 TANABE Y, JESSELL T M. Diversity and pattern in the developing spinal cord[J]. Science, 1996, 274(5290): 1115-1123. DOI:10.1126/science.274.5290.1115
doi: 10.1126/science.274.5290.1115
16 SHI Y G, MASSAGUÉ J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6): 685-700. DOI:10.1016/s0092-8674(03)00432-x
doi: 10.1016/s0092-8674(03)00432-x
17 LE DRÉAU G, MARTÍ E. The multiple activities of BMPs during spinal cord development[J]. Cellular and Molecular Life Sciences, 2013, 70(22): 4293-4305. DOI:10.1007/s00018-013-1354-9
doi: 10.1007/s00018-013-1354-9
18 NITZAN E, KRISPIN S, PFALTZGRAFF E R, et al. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells[J]. Development, 2013, 140(11): 2269-2279. DOI:10.1242/dev.093294
doi: 10.1242/dev.093294
19 PLA P, MONSORO-BURQ A H. The neural border: induction, specification and maturation of the territory that generates neural crest cells[J]. Developmental Biology, 2018, 444(): S36-S46. DOI:10.1016/j.ydbio.2018.05.018
doi: 10.1016/j.ydbio.2018.05.018
20 NITZAN E, AVRAHAM O, KAHANE N, et al. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate[J]. BMC Biology, 2016, 14: 23. DOI:10.1186/s12915-016-0245-6
doi: 10.1186/s12915-016-0245-6
21 LITTLE S C, MULLINS M C. Bone morphogenetic protein heterodimers assemble heteromeric typeⅠreceptor complexes to pattern the dorsoventral axis[J]. Nature Cell Biology, 2009, 11(5): 637-643. DOI:10.1038/ncb1870
doi: 10.1038/ncb1870
22 ZHU W, KIM J, CHENG C, et al. Noggin regulation of bone morphogenetic protein (BMP) 2/7 heterodimer activity in vitro [J]. Bone, 2006, 39(1): 61-71. DOI:10.1016/j.bone.2005.12.018
doi: 10.1016/j.bone.2005.12.018
23 BALEMANS W, VAN HUL W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators[J]. Developmental Biology, 2002, 250(2): 231-250. DOI:10.1006/dbio.2002.0779
doi: 10.1006/dbio.2002.0779
24 HAVRANEK K E, WHITE L A, LANCHY J M, et al. Transcriptome profiling in Rift Valley fever virus infected cells reveals modified transcriptional and alternative splicing programs[J]. PLoS ONE, 2019, 14(5): e217497. DOI:10.1371/journal.pone.0217497
doi: 10.1371/journal.pone.0217497
25 WINE-LEE L, AHN K J, RICHARDSON R D, et al. Signaling through BMP type 1 receptors is required for development of interneuron cell types in the dorsal spinal cord[J]. Development, 2004, 131(21): 5393-5403. DOI:10.1242/dev.01379
doi: 10.1242/dev.01379
26 PANCHISION D M, PICKEL J M, STUDER L, et al. Sequential actions of BMP receptors control neural precursor cell production and fate[J]. Genes & Development, 2001, 15(16): 2094-2110. DOI:10.1101/gad.894701
doi: 10.1101/gad.894701
27 TIMMER J R, WANG C, NISWANDER L. BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors[J]. Development, 2002, 129(10): 2459-2472.
28 HAZEN V M, ANDREWS M G, UMANS L, et al. BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord[J]. Developmental Biology, 2012, 367(2): 216-227. DOI:10.1016/j.ydbio.2012.05.014
doi: 10.1016/j.ydbio.2012.05.014
29 MASSAGUE J, SEOANE J, WOTTON D. Smad transcription factors[J]. Genes & Development, 2005, 19(23): 2783-2810. DOI:10.1101/gad.1350705
doi: 10.1101/gad.1350705
30 HAZEN V M, PHAN K D, HUDIBURGH S, et al. Inhibitory Smads differentially regulate cell fate specification and axon dynamics in the dorsal spinal cord[J]. Developmental Biology, 2011, 356(2): 566-575. DOI:10.1016/j.ydbio.2011.06.017
doi: 10.1016/j.ydbio.2011.06.017
31 LIEM K J, Jr, JESSELL T M, BRISCOE J. Regulation of the neural patterning activity of Sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites[J]. Development, 2000, 127(22): 4855-4866.
32 LIEM JR K J, TREMML G, JESSELL T M. A role for the roof plate and its resident TGFβ-related proteins in neuronal patterning in the dorsal spinal cord[J]. Cell, 1997, 91(1): 127-138. DOI:10.1016/s0092-8674(01)80015-5
doi: 10.1016/s0092-8674(01)80015-5
33 ANDREWS M G, DEL CASTILLO L M, OCHOA-BOLTON E, et al. BMPs direct sensory interneuron identity in the developing spinal cord using signal-specific not morphogenic activities[J]. eLife, 2017, 6: e30647. DOI:10.7554/eLife.30647
doi: 10.7554/eLife.30647
34 LE DRÉAU G, GARCIA-CAMPMANY L, RABADÁN M A, et al. Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord[J]. Development, 2012, 139(2): 259-268. DOI:10.1242/dev.074948
doi: 10.1242/dev.074948
35 TOZER S, LE DRÉAU G, MARTI E, et al. Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube[J]. Development, 2013, 140(7): 1467-1474. DOI:10.1242/dev.090118
doi: 10.1242/dev.090118
36 RIMKUS T K, CARPENTER R L, QASEM S, et al. Targeting the Sonic hedgehog signaling pathway: review of smoothened and GLI inhibitors[J]. Cancers, 2016, 8(2): 22. DOI:10.3390/cancers8020022
doi: 10.3390/cancers8020022
37 ROELINK H, PORTER J A, CHIANG C, et al. Floor plate and motor neuron induction by different concentrations of the amino-terminal cleavage product of Sonic hedgehog autoproteolysis[J]. Cell, 1995, 81(3): 445-455. DOI:10.1016/0092-8674(95)90397-6
doi: 10.1016/0092-8674(95)90397-6
38 PLACZEK M, BRISCOE J. The floor plate: multiple cells, multiple signals[J]. Nature Reviews Neuroscience, 2005, 6(3): 230-240. DOI:10.1038/nrn1628
doi: 10.1038/nrn1628
39 PORTER J A, EKKER S C, PARK W J, et al. Hedgehog patterning activity: role of a lipophilic modification mediated by the carboxy-terminal autoprocessing domain[J]. Cell, 1996, 86(1): 21-34. DOI:‍10.1016/s0092-8674(00)80074-4
doi: ?10.1016/s0092-8674(00)80074-4
40 ZENG X, GOETZ J A, SUBER L M, et al. A freely diffusible form of Sonic hedgehog mediates long-range signalling[J]. Nature, 2001, 411(6838): 716-720. DOI:10.1038/35079648
doi: 10.1038/35079648
41 CHEN M H, LI Y J, KAWAKAMI T, et al. Palmitoylation is required for the production of a soluble multimeric hedgehog protein complex and long-range signaling in vertebrates[J]. Genes & Development, 2004, 18(6): 641-659. DOI:‍10.1101/gad.1185804
doi: ?10.1101/gad.1185804
42 ZHANG X M, RAMALHO-SANTOS M, MCMAHON A P. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node[J]. Cell, 2001, 106(2): 781-792.
43 CASPARY T, GARCÍA-GARCÍA M J, HUANGFU D W, et al. Mouse dispatched homolog1 is required for long-range, but not juxtacrine, Hh signaling[J]. Current Biology, 2002, 12(18): 1628-1632. DOI:10.1016/s0960-9822(02)01147-8
doi: 10.1016/s0960-9822(02)01147-8
44 TIAN H, JEONG J H, HARFE B D, et al. Mouse Disp1 is required in Sonic hedgehog-expressing cells for paracrine activity of the cholesterol-modified ligand[J]. Development, 2005, 132(1): 133-142. DOI:10.1242/dev.01563
doi: 10.1242/dev.01563
45 DANESIN C, AGIUS E, ESCALAS N, et al. Ventral neural progenitors switch toward an oligodendroglial fate in response to increased Sonic hedgehog (Shh) activity: involvement of sulfatase 1 in modulating Shh signaling in the ventral spinal cord[J]. Journal of Neuroscience, 2006, 26(19): 5037-5048. DOI:10.1523/JNEUROSCI.0715-06.2006
doi: 10.1523/JNEUROSCI.0715-06.2006
46 ZHANG W, KANG J S, COLE F, et al. Cdo functions at multiple points in the Sonic hedgehog pathway, and Cdo-deficient mice accurately model human holoprosencephaly[J]. Developmental Cell, 2006, 10(5): 657-665. DOI:10.1016/j.devcel.2006.04.005
doi: 10.1016/j.devcel.2006.04.005
47 ALLEN B L, TENZEN T, MCMAHON A P. The hedgehog-binding proteins Gas1 and Cdo cooperate to positively regulate Shh signaling during mouse development[J]. Genes & Development, 2007, 21(10): 1244-1257. DOI:10.1101/gad.1543607
doi: 10.1101/gad.1543607
48 TENZEN T, ALLEN B L, COLE F, et al. The cell surface membrane proteins Cdo and Boc are components and targets of the hedgehog signaling pathway and feedback network in mice[J]. Developmental Cell, 2006, 10(5): 647-656. DOI:10.1016/j.devcel.2006.04.004
doi: 10.1016/j.devcel.2006.04.004
49 JEONG J H, MCMAHON A P. Growth and pattern of the mammalian neural tube are governed by partially overlapping feedback activities of the hedgehog antagonists patched 1 and Hhip1[J]. Development, 2005, 132(1): 143-154. DOI:10.1242/dev.01566
doi: 10.1242/dev.01566
50 ELDAR A, ROSIN D, SHILO B Z, et al. Self-enhanced ligand degradation underlies robustness of morphogen gradients[J]. Developmental Cell, 2003, 5(4): 635-646. DOI:10.1016/s1534-5807(03)00292-2
doi: 10.1016/s1534-5807(03)00292-2
51 HOLTZ A M, PETERSON K A, NISHI Y, et al. Essential role for ligand-dependent feedback antagonism of vertebrate hedgehog signaling by PTCH1, PTCH2 and HHIP1 during neural patterning[J]. Development, 2013, 140(16): 3423-3434. DOI:10.1242/dev.095083
doi: 10.1242/dev.095083
52 JAKOBS P, SCHULZ P, ORTMANN C, et al. Bridging the gap: heparan sulfate and Scube2 assemble Sonic hedgehog release complexes at the surface of producing cells[J]. Scientific Reports, 2016, 6(1): 26435. DOI:10.1038/srep26435
doi: 10.1038/srep26435
53 BRISCOE J, THEROND P P. The mechanisms of hedgehog signalling and its roles in development and disease[J]. Nature Reviews Molecular Cell Biology, 2013, 14(7): 416-429. DOI:10.1038/nrm3598
doi: 10.1038/nrm3598
54 ROHATGI R, MILENKOVIC L, SCOTT M P. Patched1 regulates hedgehog signaling at the primary cilium[J]. Science, 2007, 317(5836): 372-376. DOI:10.1126/science.1139740
doi: 10.1126/science.1139740
55 JIA J H, TONG C, JIANG J. Smoothened transduces hedgehog signal by physically interacting with Costal2/Fused complex through its C-terminal tail[J]. Genes & Development, 2003, 17(21): 2709-2720. DOI:10.1101/gad.1136603
doi: 10.1101/gad.1136603
56 CHEN C H, VON KESSLER D P, PARK W, et al. Nuclear trafficking of cubitus interruptus in the transcriptional regulation of hedgehog target gene expression[J]. Cell, 1999, 98(3): 305-316. DOI:10.1016/s0092-8674(00)81960-1
doi: 10.1016/s0092-8674(00)81960-1
57 VARJOSALO M, LI S P, TAIPALE J. Divergence of hedgehog signal transduction mechanism between Drosophila and mammals[J]. Developmental Cell, 2006, 10(2): 177-186. DOI:10.1016/j.devcel.2005.12.014
doi: 10.1016/j.devcel.2005.12.014
58 TAY S Y, INGHAM P W, ROY S. A homologue of the Drosophila kinesin-like protein Costal2 regulates hedgehog signal transduction in the vertebrate embryo[J]. Development, 2005, 132(4): 625-634. DOI:10.1242/dev.01606
doi: 10.1242/dev.01606
59 MIMEAULT M, BATRA S K. Frequent deregulations in the hedgehog signaling network and cross-talks with the epidermal growth factor receptor pathway involved in cancer progression and targeted therapies[J]. Pharmacological Reviews, 2010, 62(3): 497-524. DOI:10.1124/pr.109.002329
doi: 10.1124/pr.109.002329
60 AZA-BLANC P, RAMIREZ-WEBER F A, LAGET M P, et al. Proteolysis that is inhibited by hedgehog targets cubitus interruptus protein to the nucleus and converts it to a repressor[J]. Cell, 1997, 89(7): 1043-1053. DOI:10.1016/s0092-8674(00)80292-5
doi: 10.1016/s0092-8674(00)80292-5
61 DING Q, MOTOYAMA J, GASCA S, et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice[J]. Development, 1998, 125(14): 2533-2543.
62 PERSSON M, STAMATAKI D, WELSCHER P TE, et al. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity[J]. Genes & Development, 2002, 16(22): 2865-2878. DOI:10.1101/gad.243402
doi: 10.1101/gad.243402
63 JACOB J, BRISCOE J. Gli proteins and the control of spinal-cord patterning[J]. EMBO Reports, 2003, 4(8): 761-765. DOI:10.1038/sj.embor.embor896
doi: 10.1038/sj.embor.embor896
64 STAMATAKI D, ULLOA F, TSONI S V, et al. A gradient of Gli activity mediates graded Sonic hedgehog signaling in the neural tube[J]. Genes & Development, 2005, 19(5): 626-641. DOI:10.1101/gad.325905
doi: 10.1101/gad.325905
65 DESSAUD E, MCMAHON A P, BRISCOE J. Pattern formation in the vertebrate neural tube: a Sonic hedgehog morphogen-regulated transcriptional network[J]. Development, 2008, 135(15): 2489-2503. DOI:10.1242/dev.009324
doi: 10.1242/dev.009324
66 MARIGO V, TABIN C J. Regulation of patched by Sonic hedgehog in the developing neural tube[J]. PNAS, 1996, 93(18): 9346-9351. DOI:‍‍10.1073/pnas.93.18.934 6
doi: ??10.1073/pnas.93.18.934
67 LANCASTER M A, RENNER M, MARTIN C A, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467): 373-379. DOI:10.1038/nature12517
doi: 10.1038/nature12517
68 REYNOLDS B A, WEISS S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992, 255(5052): 1707-1710. DOI:10.1126/science.1553558
doi: 10.1126/science.1553558
69 EIRAKU M, WATANABE K, MATSUO-TAKASAKI M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5): 519-532. DOI:10.1016/j.stem.2008.09.002
doi: 10.1016/j.stem.2008.09.002
70 QIAN X Y, NGUYEN H N, SONG M M, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5): 1238-1254. DOI:10.1016/j.cell.2016.04.032
doi: 10.1016/j.cell.2016.04.032
71 SASAI Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture[J]. Cell Stem Cell, 2013, 12(5): 520-530. DOI:10.1016/j.stem.2013.04.009
doi: 10.1016/j.stem.2013.04.009
72 HABIB S J, CHEN B C, TSAI F C, et al. A localized Wnt signal orients asymmetric stem cell division in vitro [J]. Science, 2013, 339(6126): 1445-1448. DOI:10.1126/science.1231077
doi: 10.1126/science.1231077
No related articles found!