Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (5): 660-670    DOI: 10.3785/j.issn.1008-9209.2021.07.191
农业工程     
苹果管道输送装置参数优化与试验
陈春皓(),李建平(),边永亮,吕林硕,薛春林
河北农业大学机电工程学院,河北 保定 071000
Parameter optimization and test of an apple pipeline transportation device
Chunhao CHEN(),Jianping LI(),Yongliang BIAN,Linshuo Lü,Chunlin XUE
College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071000, Hebei, China
 全文: PDF(4133 KB)   HTML
摘要:

针对果农采摘果树高层苹果效率低的问题,设计了一种辅助人工采摘的管道输送装置。为优化该装置的输送参数,建立了撞击力测试试验台,并以‘富士’苹果为研究对象,分析果径为80~90 mm的苹果从3 m高度沿管道输送至果箱处的撞击力及受到的机械损伤。以管道内衬种类、内衬厚度、防撞垫厚度为试验因素,以苹果落入果箱时的撞击力及损伤体积为指标,在单因素试验的基础上进行响应面试验。单因素试验结果表明,珍珠棉内衬材料对苹果的保护作用相对较好,撞击力与损伤体积均分别随内衬厚度和防撞垫厚度的增加呈逐渐减小的趋势。响应面试验结果表明,内衬种类为珍珠棉,内衬厚度为10 mm,防撞垫厚度为8 mm是最优输送参数组合,在该条件下,苹果落入果箱时的撞击力为4.99~5.47 N,损伤体积为275.02~300.52 mm3。经过试验验证,苹果的撞击力与损伤体积的误差均在5%以内,说明管道输送参数优化结果可靠。

关键词: 苹果采摘管道输送撞击力损伤体积单因素试验响应面试验    
Abstract:

In view of the low efficiency of picking high-level apples from fruit trees by fruit farmers, a pipeline transportation device for assisting manual picking was designed. In order to optimize the transportation parameters of the device, a test bench for impact force was established. Taking 'Fuji' apples as the research object, the impact force and mechanical damage of 'Fuji' apples with a fruit diameter of 80-90 mm from a height of 3 m along the pipeline to the fruit box were analyzed. Taking the type of pipeline lining, the lining thickness, and the crash pad thickness as the test factors, and the impact force and damage volume of apples when they fell into the fruit box as the indexes, the response surface test was carried out on the basis of the single factor test. The results of single factor test showed that the pearl cotton material had a relatively good protective effect on apples. The impact force and damage volume gradually decreased with the increase of the lining thickness, and gradually decreased with the increase of the crash pad thickness. The results of the response surface test showed that the optimal combination of transportation parameters was as follows: the lining type was pearl cotton, and the lining thickness was 10 mm, and the crash pad thickness was 8 mm. At the optimal combination conditions, the impact force when the apple fell into the fruit box was 4.99-5.47 N, and the damage volume was 275.02-300.52 mm3. The results of verification test showed that the errors of the impact force and the damage volume of apple were both less than 5%, indicating that the optimization results of pipeline transportation parameters are reliable.

Key words: apple harvest    pipeline transportation    impact force    damage volume    single factor test    response surface test
收稿日期: 2021-07-19 出版日期: 2022-11-02
CLC:  S 225.93  
基金资助: 国家现代农业产业技术体系建设项目(CARS-27);河北省现代农业产业技术体系水果创新团队果园装备岗项目(HBCT2018100205)
通讯作者: 李建平     E-mail: chenchunhao1998@163.com;ljpnd327@126.com
作者简介: 陈春皓(https://orcid.org/0000-0003-4378-8726),E-mail:chenchunhao1998@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈春皓
李建平
边永亮
吕林硕
薛春林

引用本文:

陈春皓,李建平,边永亮,吕林硕,薛春林. 苹果管道输送装置参数优化与试验[J]. 浙江大学学报(农业与生命科学版), 2022, 48(5): 660-670.

Chunhao CHEN,Jianping LI,Yongliang BIAN,Linshuo Lü,Chunlin XUE. Parameter optimization and test of an apple pipeline transportation device. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(5): 660-670.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.07.191        https://www.zjujournals.com/agr/CN/Y2022/V48/I5/660

图1  撞击力测试试验台1:输送管道;2:管道内衬;3:‘富士’苹果;4:防撞垫;5:数显推拉力计;6:试验底座;7:电脑;8:苹果损伤观测台;9:台架。
图2  苹果输送过程中的受力分析1:苹果;2:管道内衬;G:苹果所受的重力;FN:隆起后的内衬对苹果的支撑力;f:输送管道与苹果间的摩擦力;β:摩擦力与输送管道壁间的夹角;θ:输送管道与地面间的夹角。
图3  苹果落入果箱时的受力分析1:初始位置的苹果;2:落在防撞垫上的苹果;3:防撞垫;a:苹果由管道输送后的加速度;G:苹果所受的重力;FN1:隆起后的防撞垫对苹果的支撑力;θ:输送管道与地面间的夹角。
图4  内衬材料种类A.气泡膜;B.珍珠棉;C.海绵。
水平Level试验因素 Test factor

X1内衬种类

Lining type

X2内衬厚度

Lining thickness/

mm

X3防撞垫厚度

Crash pad thickness/

mm

-1

气泡膜

Bubble film

54
0

珍珠棉

Pearl cotton

86
1海绵 Sponge108
表1  试验因素和水平编码
图5  苹果损伤测试示意图A.苹果损伤横切图;B.苹果损伤纵切图。ω1:损伤表面的长轴;ω2:损伤表面的短轴;d1:损伤深度;d2:果皮表面到损伤顶部的距离。

内衬种类

Lining type

撞击力

Impact force/N

损伤体积

Damage volume/mm3

气泡膜 Bubble film12.641 435.25
珍珠棉 Pearl cotton10.961 127.79
海绵 Sponge10.961 222.56
PP value0.003**<0.001**
FF value18.5978.16
表2  内衬种类对苹果管道输送参数的影响

内衬厚度

Lining thickness/mm

撞击力

Impact force/N

损伤体积

Damage volume/mm3

315.071 556.60
510.961 127.80
87.68850.03
106.23669.89
PP value<0.001**<0.001**
FF value398.15520.39
表3  内衬厚度对苹果管道输送参数的影响

防撞垫厚度

Crash pad thickness/mm

撞击力

Impact force/N

损伤体积

Damage volume/mm3

212.761 471.05
410.961 127.79
610.19949.10
88.71772.53
PP value<0.001**<0.001**
FF value72.11342.08
表4  防撞垫厚度对苹果管道输送参数的影响

试验序号

Test number

试验因素 Test factor响应值 Response value
X1X2X3

Y1撞击力

Impact force/N

Y2损伤体积

Damage volume/mm3

1-1-1012.361 416.88
21-1012.681 438.65
3-1106.98643.17
41107.84828.53
5-10-110.121 010.21
610-111.081 229.07
7-1017.88619.47
81018.04796.50
90-1-112.781 449.77
1001-17.56640.03
110-1110.02940.36
120115.30281.88
130007.86634.72
140007.88675.11
150007.76622.81
160007.68650.61
170007.92660.07
表5  响应面试验方案及结果
参量 ParameterY1撞击力 Impact forceY2损伤体积 Damage volume
FF valuePP valueFF valuePP value
模型 Model1 034.64<0.000 1**199.42<0.000 1**
X181.06<0.000 1**43.680.000 3**
X26 228.06<0.000 1**977.01<0.000 1**
X31 625.72<0.000 1**343.40<0.000 1**
X1X28.940.020 2*6.430.038 9*
X1X319.610.003 0**0.420.537 5
X2X37.660.027 8*5.500.051 5
X12812.99<0.000 1**272.39<0.000 1**
X22408.86<0.000 1**122.03<0.000 1**
X3221.690.002 3**0.130.728 7
失拟项 Lack of fit0.649 30.623 54.393 30.093 4
表6  回归模型的方差分析
图6  各因素交互作用对苹果撞击力的影响A. X1=0;B. X2=0;C. X3=0。图7同。
图7  各因素交互作用对苹果损伤体积的影响
图8  苹果损伤对比图A.苹果经无缓冲输送后的损伤;B.苹果经缓冲输送后的损伤。
1 陈学森,韩明玉,苏桂林,等.当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J].果树学报,2010,27(4):598-604. DOI:10.13925/j.cnki.gsxb.2010.04.038
CHEN X S, HAN M Y, SU G L, et al. Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science, 2010, 27(4): 598-604. (in Chinese with English abstract)
doi: 10.13925/j.cnki.gsxb.2010.04.038
2 郑国富.我国苹果出口贸易发展的特征、问题与升级战略[J].中国果树,2021(6):89-92. DOI:10.16626/j.cnki.issn1000-8047.2021.06.021
ZHENG G F. Characteristics, problems and upgrading strategy of apple export trade development in China[J]. China Fruits, 2021(6): 89-92. (in Chinese)
doi: 10.16626/j.cnki.issn1000-8047.2021.06.021
3 霍鹏,李建平,杨欣,等.振摆式起苗清土一体机结构设计与田间试验[J].浙江大学学报(农业与生命科学版),2020,46(5):618-624. DOI:10.3785/j.issn.1008-9209.2020.03.041
HUO P, LI J P, YANG X, et al. Structure design and field test of vibration swing type seedling lifting and soil cleaning machine[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(5): 618-624. (in Chinese with English abstract)
doi: 10.3785/j.issn.1008-9209.2020.03.041
4 常倩,李瑾.2000年以来中国苹果产业发展趋势分析[J].北方园艺,2021(3):155-160. DOI:10.11937/bfyy.20202270
CHANG Q, LI J. Development trend of apple industry in China since 2000[J]. Northern Horticulture, 2021(3): 155-160. (in Chinese with English abstract)
doi: 10.11937/bfyy.20202270
5 THAMSUWAN O, GALVIN K, TCHONG-FRENCH M, et al. Comparisons of physical exposure between workers harvesting apples on mobile orchard platforms and ladders, part 1: back and upper arm postures[J]. Applied Ergonomics, 2020, 89: 103193. DOI:10.1016/j.apergo.2020.103193
doi: 10.1016/j.apergo.2020.103193
6 陈真真.南疆苹果采摘机械系统末端执行器的设计与研究[D].新疆,阿拉尔:塔里木大学,2016.
CHEN Z Z. Design and research of end-actuator of the machnical system for Nanjiang apple picking[D]. Alaer, Xinjiang: Tarim University, 2016. (in Chinese with English abstract)
7 邓云,吴颖,李云飞.果蔬在贮运过程中的生物力学特性及质地检测[J].农业工程学报,2005,21(4):1-6. DOI:10.3321/j.issn:1002-6819.2005.04.001
DENG Y, WU Y, LI Y F. Biomechanical properties and texture detection of fruits band vegetables during storage and transportation[J]. Transactions of the CSAE, 2005, 21(4): 1-6. (in Chinese with English abstract)
doi: 10.3321/j.issn:1002-6819.2005.04.001
8 何晓东,朱德泉,朱健军,等.苹果采后加工碰撞损伤影响因素研究[J].中国农机化学报,2021,42(1):101-108. DOI:10.13733/j.jcam.issn.2095-5553.2021.01.014
HE X D, ZHU D Q, ZHU J J, et al. Study on the influencing factors of collision damage in apple postharvest processing[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(1): 101-108. (in Chinese with English abstract)
doi: 10.13733/j.jcam.issn.2095-5553.2021.01.014
9 孔真.苹果临界跌落高度和损伤脆值的试验研究[J].包装工程,2017,38(11):84-87. DOI:10.19554/j.cnki.1001-3563.2017.11.020
KONG Z. Experimental study on critical dropping height and bruise fragility of apple[J]. Packaging Engineering, 2017, 38(11): 84-87. (in Chinese with English abstract)
doi: 10.19554/j.cnki.1001-3563.2017.11.020
10 章海亮,孙旭东,刘燕德,等.近红外光谱检测苹果可溶性固形物[J].农业工程学报,2009,25():340-344. DOI:10.3969/j.issn.1002-6819.2009.z2.064
ZHANG H L, SUN X D, LIU Y D, et al. Measurement of soluble solid content in apples using near infrared spectroscopy[J]. Transactions of the CSAE, 2009, 25(): 340-344. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2009.z2.064
11 张淑娟,张海红,王凤花,等.柿子可溶性固形物含量的可见-近红外光谱检测[J].农业工程学报,2009,25():345-347. DOI:10.3969/j.issn.1002-6819.2009.z2.065
ZHANG S J, ZHANG H H, WANG F H, et al. Measurement of soluble solid content in persimmon using visible-near infrared spectroscopy[J]. Transactions of the CSAE, 2009, 25(): 345-347. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2009.z2.065
12 OPARA U L, PATHARE P B. Bruise damage measurement and analysis of fresh horticultural produce: a review[J]. Postharvest Biology and Technology, 2014, 91: 9-24. DOI:10.1016/j.postharvbio.2013.12.009
doi: 10.1016/j.postharvbio.2013.12.009
13 MOHSENIN N N, JINDAL V K, MANOR A N. Mechanics of impact of a falling fruit on a cushioned surface[J]. Transactions of the American Society of Agricultural Engineers, 1978, 21(3): 594-600.
14 STOPA R, SZYJEWICZ D, KOMARNICKI P, et al. Determining the resistance to mechanical damage of apples under impact loads[J]. Postharvest Biology and Technology, 2018, 146: 79-89. DOI:10.1016/j.postharvbio.2018.08.016
doi: 10.1016/j.postharvbio.2018.08.016
15 STROPEK Z, GOŁACKI K. Bruise susceptibility and energy dissipation analysis in pears under impact loading conditions[J]. Postharvest Biology and Technology, 2020, 163: 111-120.DOI:10.1016/j.postharvbio.2020.111120
doi: 10.1016/j.postharvbio.2020.111120
16 KOMARNICKI P, STOPA R, KUTA Ł, et al. Determination of apple bruise resistance based on the surface pressure and contact area measurements under impact loads[J]. Computers and Electronics in Agriculture, 2017, 142: 155-164. DOI:10.1016/j.compag.2017.08.028
doi: 10.1016/j.compag.2017.08.028
17 卢立新.跌落损伤脆值及损伤边界[J].包装工程,2005(6):1-4, 11. DOI:10.3969/j.issn.1001-3563.2005.06.001
LU L X. Dropping bruise fragility and bruise boundary[J]. Packaging Engineering, 2005(6): 1-4, 11. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-3563.2005.06.001
18 卢立新,李春飞.单层与多层苹果跌落冲击损伤研究[J].包装工程,2006,27(6):1-3. DOI:10.3969/j.issn.1001-3563.2006.06.001
LU L X, LI C F. Research on dropping bruising of single layer and multilayer apples[J]. Packaging Engineering, 2006, 27(6): 1-3. (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-3563.2006.06.001
19 卢立新,王志伟.苹果跌落冲击力学特性研究[J].农业工程学报,2007,23(2):254-258. DOI:‍10.3321/j.issn:1002-6819.2007.02.049
LU L X, WANG Z W. Dropping impact mechanical characteristics of apple[J]. Transactions of the CSAE, 2007, 23(2): 254-258. (in Chinese with English abstract)
doi: ?10.3321/j.issn:1002-6819.2007.02.049
20 李小昱,王为,朱俊平,等.苹果机械损伤应力松弛特性的研究[J].农业机械学报,1997,28():66-70.
LI X Y, WANG W, ZHU J P, et al. A study on stress relaxation properties of mechanical damage of apple[J]. Transactions of the Chinese Society of Agricultural Machinery, 1997, 28(): 66-70. (in Chinese with English abstract)
21 王亚龙.牵引式果园采摘作业平台设计与研究[D].陕西,杨凌:西北农林科技大学,2017.
WANG Y L. Design and research on tractive orchard picking platform[D]. Yangling, Shaanxi: Northwest A & F University, 2017. (in Chinese with English abstract)
22 宋哲,王颖达,于年文,等.辽宁省苹果产业发展形势分析与应对策略[J].北方园艺,2021(12):140-146. DOI:10.11937/bfyy.20204184
SONG Z, WANG Y D, YU N W, et al. Analysis on the development of apple industry in Liaoning Province and countermeasures[J]. Northern Horticulture, 2021(12): 140-146. (in Chinese with English abstract)
doi: 10.11937/bfyy.20204184
23 尹中会,邹莉君,吴晓东.钢带加硅橡胶式过卷缓冲元件力学分析[J].煤炭工程,2019,51(11):154-158. DOI:10.11799/ce201911033
YIN Z H, ZOU L J, WU X D. Mechanical analysis of steel strip and silicone type overwind buffer component[J]. Coal Engineering, 2019, 51(11): 154-158. (in Chinese with English abstract)
doi: 10.11799/ce201911033
24 薛洁,李欢,王香兰,等.不同包装运输对猕猴桃货架品质的影响[J].食品科学,2022,43(5):185-193. DOI:10.7506/spkx1002-6630-20201201-011
XUE J, LI H, WANG X L, et al. Effect of different packages during transportation on shelf-life quality of kiwifruit[J]. Food Science, 2022, 43(5): 185-193. (in Chinese with English abstract)
doi: 10.7506/spkx1002-6630-20201201-011
25 单明彻,徐朗.苹果的机械特性和机械损伤[J].农业机械学报,1988(2):72-79.
SHAN M C, XU L. Mechanical characters and mechanical bruise of apples[J]. Transactions of the Chinese Society of Agricultural Machinery, 1988(2): 72-79. (in Chinese with English abstract)
26 胡广锐,卜令昕,张恩宇,等.苹果两向异性力学特性和跌落试验研究[J].农机化研究,2021,43(4):154-160. DOI:10.13427/j.cnki.njyi.2021.04.028
HU G R, BU L X, ZHANG E Y, et al. Experimental research of anisotropic mechanical properties and drop test of apples[J]. Journal of Agricultural Mechanization Research, 2021, 43(4): 154-160. (in Chinese with English abstract)
doi: 10.13427/j.cnki.njyi.2021.04.028
27 KOMARNICKI P, STOPA R, SZYJEWICZ D, et al. Evaluation of bruise resistance of pears to impact load[J]. Postharvest Biology and Technology, 2016, 114: 36-44. DOI:10.1016/j.postharvbio.2015.11.017
doi: 10.1016/j.postharvbio.2015.11.017
28 夏铭,赵晓晓,徐昌杰,等.不同减振衬垫对模拟运输猕猴桃生理和品质影响[J].食品工业科技,2019,40(4):276-279, 285. DOI:10.13386/j.issn1002-0306.2019.04.046
XIA M, ZHAO X X, XU C J, et al. Physiological and qualitative influences of anti-vibration pad on kiwifruit in simulated transportation[J]. Science and Technology of Food Industry, 2019, 40(4): 276-279, 285. (in Chinese with English abstract)
doi: 10.13386/j.issn1002-0306.2019.04.046
29 黎春红,周宏胜,张雷刚,等.不同内包装方式对模拟运输过程中水蜜桃品质的影响[J].现代食品科技,2017,33(12):177-183. DOI:10.13982/j.mfst.1673-9078.2017.12.027
LI C H, ZHOU H S, ZHANG L G, et al. Effects of different inner-packages treatments on the quality of juicy peach fruits during simulated transportation[J].Modern Food Science and Technology, 2017, 33(12): 177-183. (in Chinese with English abstract)
doi: 10.13982/j.mfst.1673-9078.2017.12.027
30 刘庆伦,冯嫦.包装材料EPE热封工艺的实验研究与分析[J].包装工程,2017,38(23):111-115. DOI:10.19554/j.cnki.1001-3563.2017.23.025
LIU Q L, FENG C. Experimental study and analysis of heat sealing technology for packaging material EPE[J]. Packaging Engineering, 2017, 38(23): 111-115. (in Chinese with English abstract)
doi: 10.19554/j.cnki.1001-3563.2017.23.025
31 李萌,鲁宁,李佳德.工控设备缓冲包装跌落试验及其仿真分析[J].包装工程,2015,36(5):74-78, 85. DOI:10.19554/j.cnki.1001-3563.2015.05.015
LI M, LU N, LI J D. Drop test of an industrial control equipment cushion packaging and its simulation analysis[J]. Packaging Engineering, 2015, 36(5): 74-78, 85. (in Chinese with English abstract)
doi: 10.19554/j.cnki.1001-3563.2015.05.015
No related articles found!