Please wait a minute...
浙江大学学报(农业与生命科学版)  2022, Vol. 48 Issue (1): 125-134    DOI: 10.3785/j.issn.1008-9209.2021.03.151
农业工程     
塑相水田土壤参数对履带式拖拉机行驶性能的影响
曹明(),龙祖熙(),王永维(),潘宇轩,王俊
浙江大学生物系统工程与食品科学学院,杭州 310058
Impact of soil physical properties on the driving performance of a tracked tractor on paddy soils in the plastic state
Ming CAO(),Zuxi LONG(),Yongwei WANG(),Yuxuan PAN,Jun WANG
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1986 KB)   HTML
摘要:

为了探明塑相水田土壤参数、行驶速度对履带式水田拖拉机行驶性能的影响,获得较佳的作业条件,利用多体动力学软件RecurDyn建立了水田土壤力学模型和履带式水田拖拉机物理模型,并以行驶阻力、下陷深度为试验指标,以土壤黏粒含量、含水量、密度以及行驶速度为试验因素,采用四因素五水平二次正交组合方法进行仿真试验。结果表明:行驶阻力与土壤黏粒含量、含水量呈正效应,与土壤密度、行驶速度呈负效应,影响的主次关系为土壤含水量、行驶速度、土壤密度、土壤密度与黏粒含量的交互作用;下陷深度随着土壤含水量增加而增加,随着土壤黏粒含量、密度和行驶速度的增加而降低,影响的主次关系为土壤含水量、密度、黏粒含量以及黏粒含量与含水量交互作用、黏粒含量与行驶速度交互作用、含水量与行驶速度交互作用。总之,本研究建立了履带式水田拖拉机行驶阻力、下陷深度与土壤黏粒含量、含水量、密度以及行驶速度间的关系模型;依据水田土壤黏粒含量、密度等参数,利用该模型能够优化获得行驶阻力最小值时的水田土壤含水量和拖拉机行驶速度。

关键词: 土壤参数履带式拖拉机行驶速度行驶阻力下陷深度    
Abstract:

To investigate the impact of soil physical properties and driving velocity on the driving performance of a tracked tractor and obtain better operating conditions on paddy soils in the plastic state, a paddy soil mechanical model and a tracked tractor physical model were established using the RecurDyn, a multi-body dynamics software. The method of the quadratic orthogonal rotating combination design of four factors and five levels was applied to determine the impacts of clay content, moisture content, density of soils and driving velocity on the driving resistance and subsidence depth. The modeling results indicated that the driving resistance was positively associated with clay content and moisture content of soils, but negatively associated with soil density and driving velocity. The contribution rates of the factors to the driving resistance from high to low followed the order as soil moisture content, driving velocity, soil density, and soil density combined with soil clay content. The subsidence depth increased with greater soil moisture content but decreased with higher soil clay content, soil density, and driving velocity. The contribution rates of the variables to subsidence depth were ordered as soil moisture content, soil density, soil clay content, clay content combined with moisture content, clay content combined with driving velocity, and moisture content combined with driving velocity. Overall, this study quantifies the relationships among soil clay content, soil moisture content, soil density, driving velocity and driving resistance, subsidence depth of a tracked tractor using the modeling approach; and according to the soil clay content and density, the model can be used to optimize the soil moisture content and driving velocity when the driving resistance is minimum.

Key words: soil physical properties    tracked tractors    driving velocity    driving resistance    subsidence depth
收稿日期: 2021-03-15 出版日期: 2022-03-04
CLC:  S 22  
基金资助: 国家重点研发计划课题(2016YFD0700601);国家水稻产业技术体系项目(CARS-01-49);浙江大学大北农学科发展和人才培养基金
通讯作者: 王永维     E-mail: wycjlu@163.com;wywzju@zju.edu.cn
作者简介: 曹明(https://orcid.org/0000-0002-1200-6691),E-mail:wycjlu@163.com|曹明(https://orcid.org/0000-0002-1200-6691),E-mail:wycjlu@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曹明
龙祖熙
王永维
潘宇轩
王俊

引用本文:

曹明,龙祖熙,王永维,潘宇轩,王俊. 塑相水田土壤参数对履带式拖拉机行驶性能的影响[J]. 浙江大学学报(农业与生命科学版), 2022, 48(1): 125-134.

Ming CAO,Zuxi LONG,Yongwei WANG,Yuxuan PAN,Jun WANG. Impact of soil physical properties on the driving performance of a tracked tractor on paddy soils in the plastic state. Journal of Zhejiang University (Agriculture and Life Sciences), 2022, 48(1): 125-134.

链接本文:

https://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2021.03.151        https://www.zjujournals.com/agr/CN/Y2022/V48/I1/125

主要参数

Main parameter

数值

Value

外形尺寸(长×宽×高)

Size (length×width×height)/mm

3 430×1 590×2 300

履带接地长

Ground contact length of track/mm

1 540
轨距 Track gauge/mm1 080

最小离地间隙

Minimum ground clearance/mm

395
履带节距 Track pitch/mm90
履带节数 Track pitch number51
履带宽度 Track width/mm400
最小使用质量 Minimum load/kg2 300
表1  NF802型履带式水田拖拉机主要参数
图1  履带式水田拖拉机-水田土壤耦合仿真试验

编码值

Coded value

因素 Factor

土壤黏粒含量

Soil clay content/%

土壤含水量

Soil moisture content/%

土壤密度

Soil density/(g/cm3)

行驶速度

Driving velocity/(km/h)

-220.030.01.62.0
-125.035.01.84.0
030.040.02.06.0
135.045.02.28.0
240.050.02.410.0
表2  试验因素水平编码

编号

No.

X1土壤黏粒含量

Soil clay content

X2土壤含水量

Soil moisture content

X3土壤密度

Soil density

X4行驶速度

Driving velocity

Y1行驶阻力

Driving resistance/N

Y2下陷深度

Subsidence depth/mm

1-1-1-1-11 41486.8
21-1-1-11 37378.1
3-11-1-11 718120.6
411-1-11 79041.9
5-1-11-11 21456.8
61-11-11 27550.2
7-111-11 63197.5
8111-11 59110.1
9-1-1-111 21360.5
101-1-111 17045.1
11-11-111 75097.9
1211-111 57388.1
13-1-11191041.9
141-1111 65346.1
15-11111 31982.4
1611111 68376.3
17-20001 33572.3
1820001 46060.2
190-2001 01041.2
2002001 811118.1
2100-201 708100.2
2200201 42154.2
23000-21 68991.3
2400021 10660.3
2500001 47075.1
2600001 43076.1
2700001 46580.4
2800001 39074.3
2900001 48375.1
3000001 45076.4
表3  试验方案及结果

系数

Coefficient

Y1行驶阻力 Driving resistanceY2下陷深度 Subsidence depth

系数值

Coefficient value

F

F value

P

P value

系数值

Coefficient value

F

F value

P

P value

β01 449.5771.18
β148.794.000.059 9-9.7012.1900.002 4
β2184.0456.940.000 112.6320.6800.000 2
β3-54.885.060.036 5-10.4014.0400.001 4
β4-78.4610.350.004 5-2.740.9700.336 4
β12-32.441.180.291 1-9.728.1600.010 1
β1381.197.390.013 71.040.0940.762 2
β1453.313.190.090 39.648.0400.010 5
β23-31.691.130.302 1-0.420.0150.903 3
β24-3.560.010.906 39.567.8900.011 2
β3428.810.930.346 94.241.5690.227 1
模型PP value for goodness of fit<0.001<0.001
R20.920.89
表4  试验统计分析结果
图2  单因素对响应值的影响
图3  交互因子对行驶阻力的影响
图4  交互因子对下陷深度的影响

水田土壤参数

Paddy soil parameter

较佳参数组合

Better parameter combination

土壤类型

Soil type

土壤密度

Soil density/(g/cm3)

土壤含水量

Soil moisture content/%

行驶速度

Driving velocity/(km/h)

粉壤土(黏粒20.2%、粉粒60.8%)

Silty loam (clay 20.2%, silt 60.8%)

1.8532.15.6

粉黏壤土(黏粒29.8%、粉粒61.6%)

Silty clay loam (clay 29.8%, silt 61.6%)

1.9534.36.3

黏壤土(黏粒35.3%、粉粒44.4%)

Clay loam (clay 35.3%, silt 44.4%)

2.1031.38.6
表5  不同水田土壤类型优化参数组合
1 国家统计局 .中国统计年鉴:2021[M].北京:中国统计出版社,2021. DOI:10.3934/gf.2021019
National Bureau of Statistics of China . China Statistical Yearbook: 2021[M]. Beijing: China Statistics Press, 2021. (in Chinese)
doi: 10.3934/gf.2021019
2 RUBINSTEIN D , COPPOCK J L . A detailed single-link track model for multi-body dynamic simulation of crawlers[J]. Journal of Terramechanics, 2007, 44(5): 355-364. DOI:10.1016/j.jterra.2007.10.004
doi: 10.1016/j.jterra.2007.10.004
3 CHEN W , ZHAN J M , ZHOU H . Modeling and simulation of adaptive surface tracked vehicle based on RecurDyn[J]. Open Journal of Modelling and Simulation, 2013, 1(4): 37-41. DOI:10.4236/ojmsi.2013.14007
doi: 10.4236/ojmsi.2013.14007
4 杨聪彬,董明明,顾亮,等 .考虑履刺形状的履带板土壤推力研究[J].北京理工大学学报,2015,35(11):1118-1121. DOI:10.15918/j.tbit1001-0645.2015.11.004
YANG C B , DONG M M , GU L , et al . Research on soil shear strength considering the shape of grouser[J]. Transactions of Beijing Institute of Technology, 2015, 35(11): 1118-1121. (in Chinese with English abstract)
doi: 10.15918/j.tbit1001-0645.2015.11.004
5 张季清,杨福增,刘世 .微型履带拖拉机牵引附着性能研究:基于正交试验[J].农机化研究,2013,35(10):190-193, 198. DOI:10.3969/j.issn.1003-188X.2013.10.048
ZHANG J Q , YANG F Z , LIU S . Research of the micro-crawler tractor adhesion performance: based on orthogonal experiment[J]. Journal of Agricultural Mechanization Research, 2013, 35(10): 190-193, 198. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2013.10.048
6 任露泉 .土壤黏附力学[M].北京:机械工业出版社,2010:22-32.
REN L Q . Soil Adhesion Mechanics[M]. Beijing: China Machine Press, 2010: 22-32. (in Chinese)
7 JIANG Q J , CAO M , WANG Y W , et al . Estimation of soil shear strength indicators using soil physical properties of paddy soils in the plastic state[J]. Applied Sciences, 2021, 11(12): 5609. DOI:10.3390/app11125609
doi: 10.3390/app11125609
8 JIANG Q J , CAO M , WANG Y W , et al . Estimating soil penetration resistance of paddy soils in the plastic state using physical properties[J]. Agronomy, 2020, 10(12): 1914. DOI:10.3390/agronomy10121914
doi: 10.3390/agronomy10121914
9 JIANG Q J , CAO M , WANG Y W , et al . Quantification of the soil stiffness constants using physical properties of paddy soils in Yangtze Delta Plain, China[J]. Biosystems Engineering, 2020(200): 89-100. DOI:10.1016/j.biosystemseng.2020.09.004
doi: 10.1016/j.biosystemseng.2020.09.004
10 曾德超 .机械土壤动力学[M].北京:北京科学技术出版社,1990:2-5.
ZENG D C . Mechanical Soil Dynamics[M]. Beijing: Beijing Science and Technology Press, 1990: 2-5. (in Chinese)
11 GHEZZEHEI T A , OR D . Rheological properties of wet soils and clays under steady and oscillatory stresses[J]. Soil Science Society of America Journal, 2001, 65(3): 624-637. DOI:10.2136/sssaj2001.653624x
doi: 10.2136/sssaj2001.653624x
12 丁肇,李耀明,任利东,等 .履带式行驶机构压实作用下土壤应力分布均匀性分析[J].农业工程学报,2020,36(9):52-58. DOI:10.11975/j.issn.1002-6819.2020.09.006
DING Z , LI Y M , REN L D , et al . Distribution uniformity of soil stress under compaction of tracked undercarriage[J]. Transactions of the CSAE, 2020, 36(9): 52-58. (in Chinese with English abstract)
doi: 10.11975/j.issn.1002-6819.2020.09.006
13 冯江,蒋亦元 .水稻联合收获机单边驱动原地转向机构的机理与性能试验[J].农业工程学报,2013,29(4):30-35. DOI:10.3969/j.issn.1002-6819.2013.04.004
FENG J , JIANG Y Y . Mechanism and performance test of pivot turning system with single driving for rice combine harvester[J]. Transactions of the CSAE, 2013, 29(4): 30-35. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2013.04.004
14 韩彦勇,都兴隆 .水田土壤参数对履带式收获机转向阻力的影响[J].江苏农业科学,2017,45(18):214-217. DOI:10.15889/j.issn.1002-1302.2017.18.055
HAN Y Y , DU X L . Influence of paddy soil parameters on steering resistance of tracked harvester[J]. Jiangsu Agricultural Sciences, 2017, 45(18): 214-217. (in Chinese)
doi: 10.15889/j.issn.1002-1302.2017.18.055
15 刘一 .基于水田土壤力学特性的车辆通过性研究[D].南京:南京农业大学,2014:43-50. DOI:10.14257/astl.2014.45.21
LIU Y . Soil trafficability study based on mechanical properties of paddy soil[D]. Nanjing: Nanjing Agricultural University, 2014: 43-50. (in Chinese with English abstract)
doi: 10.14257/astl.2014.45.21
16 任宏生,张拓,谢铌,等 .某履带式拖拉机行驶性能的试验分析[J].重庆理工大学学报(自然科学),2019,33(5):35-39. DOI:10.3969/j.issn.1674-8425(Z).2019.05.006
REN H S , ZHANG T , XIE N , et a1 . Test and analysis of driving performance for the crawler tractor[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(5): 35-39. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-8425(Z).2019.05.006
17 孟为国 .农业车辆田间土壤承载特性参数的在线估计与检测[D].南京:南京航空航天大学,2009:24-34.
MENG W G . On-line test and calculation of soil bearing characteristic parameters from agricultural machinery[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 24-34. (in Chinese with English abstract)
18 BEKKER M G . Introduction to Terrain-Vehicle System[M]. Ann Arbor, U.S.: University of Michigan Press, 1969.
19 王晓旭,麻万诸,章明奎 .浙江省典型土壤的发生学性质与系统分类研究[J].土壤通报,2013,44(5):1025-1034.
WANG X X , MA W Z , ZHANG M K . Genetic characteristics and taxonomic classification of the representative soils in Zhejiang Province[J]. Chinese Journal of Soil Science, 2013, 44(5): 1025-1034. (in Chinese with English abstract)
20 曹明 .水田土壤承载特性与物理参数相关性研究[D].杭州:浙江大学,2019:6-9.
CAO M . Studies on correlation between soil carrying capacity and physical parameters of paddy soil[D]. Hangzhou: Zhejiang University, 2019:6-9. (in Chinese with English abstract)
21 高辉松,陈新博,薛金林,等 .拖拉机耕作阻力影响参数的因子分析[J].农机化研究,2020,42(10):17-22. DOI:10.3969/j.issn.1003-188X.2020.10.003
GAO H S , CHEN X B , XUE J L , et al . Factor analysis of influencing factors of tractor operating resistance[J]. Journal of Agricultural Mechanization Research, 2020, 42(10): 17-22. (in Chinese with English abstract)
doi: 10.3969/j.issn.1003-188X.2020.10.003
[1] 王永维,何焯亮,王俊. 船式拖拉机船型参数对滑行阻力与下陷深度的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(6): 759-766.