Please wait a minute...
浙江大学学报(农业与生命科学版)  2020, Vol. 46 Issue (1): 111-118    DOI: 10.3785/j.issn.1008-9209.2019.05.281
研究论文     
面向苹果硬度检测仪的声振信号激励与采集系统设计
王冉冉1,2(),刘鑫1,2,尹孟1,翟德昂1,刘双喜1,王金星1,2()
1. 山东农业大学机械与电子工程学院,山东 泰安 271018
2. 山东省园艺机械与装备重点实验室,山东 泰安 271018
Design of excitation and acquisition system of acoustic vibration signal for apple hardness tester
Ranran WANG1,2(),Xin LIU1,2,Meng YI1,Deang ZHAI1,Shuangxi LIU1,Jinxing WANG1,2()
1. College of Mechanical and Electronic Engineering, Shandong Agricultural University, Tai’an Shandong 271018, China
2. Shandong Provincial Key Laboratory of Horticultural Machinery and Equipment, Tai’an Shandong 271018, China
 全文: PDF(1707 KB)   HTML
摘要:

本文设计了基于声振法的苹果硬度检测仪,该检测设备主要由信号激励装置和信号采集系统2部分组成。在信号激励装置中,基于对击打钢板的摆角、弯曲角和可调高度的设计,使大多数苹果都可以被敲击到;通过控制电磁铁和电磁阀的工作状态以实现对苹果的自由敲击,从而满足流水线自动作业需求。在信号采集系统中,使用EAROBE SuperLav麦克风和MPU6050振动传感器收集声音和振动信号,并使用MATLAB软件对收集的数据进行分析。结果表明:使用所设计的检测设备,绝大多数苹果都可以被无损敲击,并且不同硬度苹果的声振信号图差异明显。说明利用声振法能够实现在流水线上对苹果进行无损检测并分级。

关键词: 苹果硬度激励装置信号采集无损检测    
Abstract:

An apple hardness tester was designed based on acoustic pulse method. The detection equipment was mainly composed of signal excitation device and signal acquisition system. Most apples could be knocked in this signal excitation system, because of proper designs of the swing angle, the bending angle and the adjustable height of the striking steel plate. Apple could be knocked freely to meet the requirements of automatic detection on assembly line by controlling the work of electromagnet and solenoid valve. In the signal acquisition system, the EAROBE SuperLav microphone and MPU6050 vibration sensor were used to collect acoustic vibration signals, and the collected data were analyzed using MATLAB software. The results showed that, using the designed detection equipment, most of the apples could be hit non-destructively, and the acoustics and vibration signal patterns of apples with different hardnesses were obviously different. It is indicated that the non-destructive testing and grading of apple can be realized on assembly line by acoustic pulse method.

Key words: apple    hardness    excitation device    signal acquisition    non-destructive testing
收稿日期: 2019-05-28 出版日期: 2020-02-25
CLC:  S 23  
基金资助: “十三五”国家重点研发计划(2017YFD0401302);山东省重点研发计划(2017CXGC0211);山东省高校“双一流”建设奖补资金项目(SYL2017XTTD02)
通讯作者: 王金星     E-mail: wranran@163.com;jinxingw@163.com
作者简介: 王冉冉(https://orcid.org/0000-0001-6890-3407),E-mail:wranran@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王冉冉
刘鑫
尹孟
翟德昂
刘双喜
王金星

引用本文:

王冉冉,刘鑫,尹孟,翟德昂,刘双喜,王金星. 面向苹果硬度检测仪的声振信号激励与采集系统设计[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 111-118.

Ranran WANG,Xin LIU,Meng YI,Deang ZHAI,Shuangxi LIU,Jinxing WANG. Design of excitation and acquisition system of acoustic vibration signal for apple hardness tester. Journal of Zhejiang University (Agriculture and Life Sciences), 2020, 46(1): 111-118.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2019.05.281        http://www.zjujournals.com/agr/CN/Y2020/V46/I1/111

图1  苹果检测装置总体结构图
图2  敲击装置机械结构图 1.电磁阀;2.电磁阀复位弹簧;3.电磁铁;4.击打钢板;5.振动信号检测装置;6.击打头;7.待测苹果;8.水果托盘;9.托板;10.旋转轴;11.固定支座;12.底座;13.调整套筒;14.麦克风。
图3  橡胶头敲击的声音信号
图4  尼龙头敲击的声音信号
图5  苹果剖面轮廓和被敲击平面示意
果实大小 Fruit size 果径 Fruit diameter/mm
小型 Small size 70~<80
中型 Middle size 80~<85
大型 Large size ≥85
表1  按果径分级的富士苹果
图6  零件相对位置图
图7  击打钢板的剖面图 a.电磁阀可击打长度;b.开口槽长度;c.击打头位置到开口槽端点位置的距离;d.击打头安装位置的长度;e.击打钢板总长度。

型号

Model

额定电压

Nominalvoltage/V

额定吸入压力

Rated suctionpressure/N

额定行程

Ratedstroke/mm

全行程

Wholestroke/mm

消耗功率

Consumed power/W

操作频率

Operating frequency/(times/h)

长×宽×高

Length×width×height/mm

MFB1-4YC 110/220 ≥40 6 ≥8.5 ≤40 7 200 100.0×55.6×71.0
表2  电磁阀参数

型号

Model

吸力

Suction/kg

电压

Voltage/V

厚度

Thickness/mm

直径

Diameter/mm

安装孔

Mounting hole

功率

Power/W

质量

Mass/g

KB-25/20 6.0 12/24 20 25 M 4 4 50
表3  电磁铁参数
图8  检测装置实物图
图9  硬度为67 N/cm2 的苹果(1号)的声音波形图
图10  硬度为67 N/cm2 的苹果(1号)的振动波形图
图11  硬度为91 N/cm2 的苹果(99号)的声音波形图
图12  硬度为91 N/cm2 的苹果(99号)的振动波形图
1 MENDOZA F , LU R F , CEN H Y . Comparison and fusion of four nondestructive sensors for predicting apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 2012,73:89-98. DOI:10.1016/j.postharvbio.2012.05.012
doi: 10.1016/j.postharvbio.2012.05.012
2 VANDER S R G M , SANDERS M . Prediction of postharvest firmness of apple using biological switch model. Journal of Theoretical Biology, 2012,310:239-248. DOI:10.1016/j.jtbi.2012.06.037
doi: 10.1016/j.jtbi.2012.06.037
3 赵玉,刘东茹,任亚梅,等 .苹果品质评价体系的建立.北方园艺,2018(19):32-41. DOI:10.11937/bfyy.20180820
ZHAO Y , LIU D R , REN Y M , et al . Establishment of apple quality evaluation system. Northern Horticulture, 2018(19):32-41. (in Chinese with English abstract)
doi: 10.11937/bfyy.20180820
4 石建新,赵猛,赵迎丽,等 .气调贮藏对富士苹果采后生理及果肉褐变的影响.果树科学,1999,16(1):14-17.
SHI J X , ZHAO M , ZHAO Y L , et al . Effects of conditioned storage on postharvest physiology and flesh browning of Fuji apple. Fruits Science, 1999,16(1):14-17. (in Chinese with English abstract)
5 樊军庆,张宝珍 .浅谈水果品质的无损检测技术.世界农业,2007(2):56-58.
FAN J Q , ZHANG B Z . Discussion on nondestructive testing technology of fruit quality. World Agriculture, 2007(2):56-58. (in Chinese with English abstract)
6 SUGIYAMA J , KATSURAI T , HONG J , et al . Melon ripeness monitoring by a portable firmness tester. Transac-tions of the ASAE, 1998,41(1):121-127. DOI:10.13031/201317135 .
doi: 10.13031/201317135
7 KUROKI S , MINAMI T , SAKURAI N . Monitoring of the elasticity index of melon fruit in a greenhouse. Engei Gakkai Zasshi, 2006,75(5):415-420. DOI:10.2503/jjshs.75.415
doi: 10.2503/jjshs.75.415
8 MACRELLIA E , ROMANI A , RUDI P , et al . Piezoelectric transducers for real-time evaluation of fruit firmness. Part Ⅰ: theory and development of acoustic techniques. Sensors and Actuators A: Physical, 2013,201:487-496. DOI:10.1016/j.sna.2013.07.033
doi: 10.1016/j.sna.2013.07.033
9 MACRELLIA E , ROMANI A , RUDI P , et al . Piezoelectric transducers for real-time evaluation of fruit firmness. Part Ⅱ: statistical and sorting analysis. Sensors and Actuators A: Physical, 2013,201:497-503. DOI:10.1016/j.sna.2013.07.037
doi: 10.1016/j.sna.2013.07.037
10 ABBOTT J A . Sonic technique for measuring texture of fruits and vegetables. Food Technology, 1968,22(5):635-646.
11 CHEN P , SUN Z . A review of non-destructive method for quality evaluation and sorting of agricultural products. Journal of Agricultural Engineering Research, 1991,49(91):85-98. DOI:10.1016/0021-8634(91)80030-i
doi: 10.1016/0021-8634(91)80030-i
12 NICOLA? B M , DEFRAEYE T , DE KETELAERE B , et al . Nondestructive measurement of fruit and vegetable quality. Annual Review of Food Science and Technology, 2014,5(1):285-312. DOI:10.1146/annurev-food-030713-092410
doi: 10.1146/annurev-food-030713-092410
13 KIBOK K , SANGDAE L , MANSOO K , et al . Determination of apple firmness by nondestructive ultrasonic measurement. Postharvest Biology and Technology, 2008,52(1):44-48. DOI:10.1016/j.postharvbio.2008.04.006
doi: 10.1016/j.postharvbio.2008.04.006
14 李明霞,白岗栓,闫亚丹,等 .山地苹果树更新修剪对树体营养及生长的影响.园艺学报,2011,38(1):139-144. DOI:10.16420/j.issn.0513-353x.2011.01.020
LI M X , BAI G S , YAN Y D , et al . Effects of pruning and regeneration on nutrition and growth of apple trees in mountain area. Journal of Horticulture, 2011,38(1):139-144. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2011.01.020
15 杜社妮,李明霞,耿桂俊,等 .更新修剪对盛果末期苹果树体营养及品质的影响.北方园艺,2011,35(8):19-22.
DU S N , LI M X , GENG G Q , et al . Effects of pruning and regeneration on the nutrition and quality of apple trees at the end of fruiting stage. Northern Horticulture, 2011,35(8):19-22. (in Chinese with English abstract)
16 刘贤赵,宿庆,孙海燕 .根系分区交替灌溉不同交替周期对苹果树生长、产量及品质的影响.生态学报,2010,30(18):4881-4888.
LIU X Z , SU Q , SUN H Y . Effects of alternate root zone irrigation on growth, yield and quality of apple trees. Acta Ecologica Sinica, 2010,30(18):4881-4888. (in Chinese with English abstract)
17 魏钦平,鲁韧强,张显川,等 .富士苹果高干开心形光照分布与产量品质的关系研究.园艺学报,2004,31(3):291-296. DOI:10.16420/j.issn.0513-353x.2004.03.002
WEI Q P , LU R Q , ZHANG X C , et al . Relationships between distribution of relative light intensity and yield and quality in different tree canopy shapes for ‘Fuji’ apple. Acta Horticulturae Sinica, 2004,31(3):291-296. (in Chinese with English abstract)
doi: 10.16420/j.issn.0513-353x.2004.03.002
18 杨素苗,李保国,齐国辉,等 .根系分区交替灌溉对苹果根系活力、树干液流和果实的影响.农业工程学报,2010,26(8):73-79. DOI:10.3969/j.issn.1002-6819.2010.08.012
YANG S M , LI B G , QI G H , et al . Effect of alternate root zone irrigation on root activity, SAP flow and fruit of apple. Transactions of the CSAE, 2010,26(8):73-79. (in Chinese with English abstract)
doi: 10.3969/j.issn.1002-6819.2010.08.012
19 杜社妮,李晶晶,张蕊,等 .苹果果实硬度适宜测定部位的研究.北方园艺,2011(24):33-35.
DU S N , LI J J , ZHANG R , et al . Study on the suitable parts for apple firmness determination. Northern Horticulture, 2011(24):33-35. (in Chinese with English abstract)
20 苏红波,戴仕明,郭新宇,等 .苹果果实几何造型及可视化研究.中国农学通报,2008,24(10):536-541.
SU H B , DAI S M , GUO X Y , et al . Study on geometric modeling and visualization of apple fruits. Chinese Agricul-tural Science Bulletin, 2008,24(10):536-541. (in Chinese with English abstract)
21 张索非,陈斌,褚静,等 .基于声学特性的苹果无损检测方法.现代仪器,2007,13(2):11-13, 17.
ZHANG S F , CHEN B , CHU J , et al . Apple nondestructive testing method based on acoustic characteristics. Modern Instruments, 2007,13(2):11-13, 17. (in Chinese with English abstract)
[1] 刘妍,周新奇,俞晓峰,李永强,韩双来. 无损检测技术在果蔬品质检测中的应用研究进展[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 27-37.
[2] 彭贞贞,叶旗慧,徐晓艳,傅达奇. 1-甲基环丙烯处理对红富士苹果贮藏品质的影响[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 83-92.
[3] 魏雨晴,王毓宁,李绍佳,孙崇德,吴迪. 基于自制便携式近红外光谱仪的枇杷果实可溶性固形物无损检测及年度重复验证[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 119-125.
[4] 白岗栓,邹超煜,杜社妮,郑锁林,刘英俊. 密植栽培模式对渭北旱塬苹果树生长的影响[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 667-674.
[5] 张萌,李光辉. 基于RELIEF算法和极限学习机的苹果轻微损伤高光谱检测方法[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 126-134.
[6] 曹乐平, 温芝元. 基于统计复杂性测度、多重分形谱等方法的柑橘品质分级[J]. 浙江大学学报(农业与生命科学版), 2015, 41(03): 309-319.
[7] 苏文浩, 刘贵珊*, 何建国, 王松磊, 贺晓光, 王伟, 吴龙国. 高光谱图像技术结合图像处理方法检测马铃薯外部缺陷[J]. 浙江大学学报(农业与生命科学版), 2014, 40(2): 188-196.
[8] 李明霞1, 杜社妮2,3, 白岗栓2,3, 耿桂俊4. 苹果树更新修剪对土壤水分及树体生长的影响[J]. 浙江大学学报(农业与生命科学版), 2012, 38(4): 467-476.
[9] 张京平, 刘孔绚, 王会. 富士苹果剖面CT值与pH值的关系研究[J]. 浙江大学学报(农业与生命科学版), 2009, 35(1): 89-92.
[10] 李鑫 袁锋 张大为等. 苹果IPM生态工程构建之理念与策略定位[J]. 浙江大学学报(农业与生命科学版), 2007, 33(1): 96-101.
[11] 朱哲燕  鲍一丹. 大豆含水率电特性的试验研究[J]. 浙江大学学报(农业与生命科学版), 2005, 31(2): 220-224.
[12] ANTIHUS Hernández Gómez  ANNIA García Pereira  何勇. 水果蔬菜品质的无损检测方法的研究与应用[J]. 浙江大学学报(农业与生命科学版), 2004, 30(4): 369-374.
[13] 阮红  宣日荣. 谷氨酸棒状杆菌乙酸盐代谢PTA、AK、ICL和MS酶活性研究[J]. 浙江大学学报(农业与生命科学版), 2003, 29(5): 529-533.
[14] 应义斌  刘燕德. 水果内部品质光特性无损检测研究及应用[J]. 浙江大学学报(农业与生命科学版), 2003, 29(2): 125-129.
[15] 胥芳  张立彬  计时鸣. 介电式水果品质分级机的原理及实现[J]. 浙江大学学报(农业与生命科学版), 2002, 28(3): 325-330.