Please wait a minute...
浙江大学学报(农业与生命科学版)  2019, Vol. 45 Issue (6): 699-706    DOI: 10.3785/j.issn.1008-9209.2018.12.202
植物保护     
柑橘黑斑病菌与柚黑斑病菌对苯并咪唑类杀菌剂的抗性及其分子机制
曾一冰1(),蒋立强1,李国华2,刘蕊2,李红叶1()
1.浙江大学农业与生物技术学院生物技术研究所,杭州 310058
2.广东省梅州市农业科学院果树研究所,广东 梅州 514071
Resistance and its molecular mechanism of Phyllosticta citricarpa and Phyllosticta citriasiana to benzimidazole fungicide
Yibing ZENG1(),Liqiang JIANG1,Guohua LI2,Rui LIU2,Hongye LI1()
1.Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
2.Fruit Research Institute, Meizhou Academy of Agricultural Sciences, Meizhou 514071, Guangdong, China
 全文: PDF(892 KB)   HTML
摘要:

为了对柑橘黑斑病和柚黑斑病提出更科学的化学防治方法,该文研究了柑橘黑斑病菌和柚黑斑病菌对杀菌剂多菌灵的抗性频率、抗性水平及其抗性分子机制。结果表明:在江西114个柑橘黑斑病菌株中发现了2个多菌灵抗性菌株,抗性频率为1.75%,抗性系数分别为5 333.6和379.2;在四川32个柑橘黑斑病菌株中发现了1个多菌灵抗性菌株,抗性频率为3.13%,抗性系数为303.3;在浙江23个菌株和重庆3个菌株中没有出现抗性菌株。在广东收集的54个柚黑斑病菌株中发现了1个抗性菌株,抗性频率为1.85%,抗性系数为13 719.5;在广西和福建分别收集的34个柚黑斑病菌株中没有发现抗性菌株。柑橘黑斑病菌和柚黑斑病菌对甲基硫菌灵和多菌灵存在正交互抗性,对嘧菌酯和多菌灵无交互抗性。因此,建议多菌灵可继续在柑橘黑斑病和柚黑斑病防治中使用,鉴于高抗菌株已出现,使用时应与其他作用机制的杀菌剂轮换使用。本实验还发现,柑橘黑斑病菌存在2种抗苯并咪唑类的分子机制,即β-微管蛋白基因上第198位氨基酸位点由谷氨酸突变为赖氨酸(抗性系数为5 333.6的菌株)和第200位氨基酸位点由苯丙氨酸突变为酪氨酸(抗性系数为379.2的菌株);而柚黑斑病菌抗苯并咪唑类的分子机制则与β-微管蛋白基因第198位氨基酸由谷氨酸突变为丙氨酸有关。

关键词: 柑橘黑斑病菌柚黑斑病菌苯并咪唑类杀菌剂抗药性分子机制    
Abstract:

In order to control citrus black spot (CBS, Phyllosticta citricarpa) and pummelo black spot (PBS, Phyllosticta citriasiana) effectively, we evaluated the resistance frequency, resistance level and their molecular mechanisms of these two pathogen populations collected from seven provinces of China to the fungicide carbendazim. The results showed that two carbendazim-resistant (Cab-R) isolates were found from the Jiangxi subpopulation of P. citricarpa out of 114 strains. The resistant frequency was 1.75%, and their coefficient of resistance were 5 333.6 and 379.2, respectively. One Cab-R strain with coefficient of resistance of 303.3 was found in the Sichuan subpopulation of P. citricarpa out of 32 strains, and the resistant frequency was 3.13%. However, none of the Cab-R isolates was detected from the Zhejiang (23 strains) and the Chongqing (3 strains) subpopulations. For P. citriasiana, one Cab-R strain, whose coefficient of resistance was 13 719.5, was obtained in the Guangdong subpopulation (54 strains in total), and the resistant frequency was 1.85%. None of the Cab-R strains was found in the Guangxi (34 strains) and the Fujian (34 strains) subpopulations. In addition, there was a positive cross-resistance between thiophanate-methyl and carbendazimin P. citricarpa and P. citriasiana, while there was no cross-resistance between azoxystrobin and carbendazim. Based on the results obtained, we suggest that the fungicide carbendazim can still be used in controlling CBS and PBS in the fields, but the rotation of the fungicides with different antifungal mechanisms is necessary given the existence of high-resistant strains. Finally, the two molecular mechanisms of carbendazim-resistance of P. citricarpa were found. One was a mutation at the amino acid (aa) 198 of β-tubulin gene, in which the glutamic acid changed to lysine (the strain with a coefficient of resistance of 5 333.6), and the other one was a mutation at the aa 200 of β-tubulin gene, in which the phenylalanine changed tyrosine (the strain with a coefficient of resistance of 379.2). However, the molecular mechanism of the carbendazim-resistance of P. citriasiana was a mutation at the aa 198 in the β-tubulin gene, in which the glutamic acid changed to alanine.

Key words: Phyllosticta citricarpa    Phyllosticta citriasiana    benzimidazole fungicide    fungicide resistance    molecular mechanism
收稿日期: 2018-12-20 出版日期: 2020-01-20
CLC:  S 436.66  
基金资助: 国家重点研发计划“柑橘化肥农药减施技术集成研究与示范”(2017YFD0202000);国家现代农业(柑橘)产业技术体系专项(CARS-26)
通讯作者: 李红叶     E-mail: 923400848@qq.com;hyli@zju.edu.cn
作者简介: 曾一冰(https://orcid.org/0000-0001-8671-0342),E-mail:923400848@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
曾一冰
蒋立强
李国华
刘蕊
李红叶

引用本文:

曾一冰,蒋立强,李国华,刘蕊,李红叶. 柑橘黑斑病菌与柚黑斑病菌对苯并咪唑类杀菌剂的抗性及其分子机制[J]. 浙江大学学报(农业与生命科学版), 2019, 45(6): 699-706.

Yibing ZENG,Liqiang JIANG,Guohua LI,Rui LIU,Hongye LI. Resistance and its molecular mechanism of Phyllosticta citricarpa and Phyllosticta citriasiana to benzimidazole fungicide. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 699-706.

链接本文:

http://www.zjujournals.com/agr/CN/10.3785/j.issn.1008-9209.2018.12.202        http://www.zjujournals.com/agr/CN/Y2019/V45/I6/699

引物名称 Primer name引物序列 Primer sequence扩增片段长度 Length of amplified product/bp
PA-bT-F5-CCCGACAACTTCGTCTTTGG-3711
PA-bT-R5-CCTCGACCTCCTTCATCGAG-3
表1  扩增柑橘黑斑病菌β-tubulin基因部分序列的引物信息

来源

Source

敏感菌株1)

Cab-S isolates1)

抗性菌株2)

Cab-R isolates2)

抗性频率

Resistant frequency/%

抗性系数

Coefficient of resistance

总计 Total17231.74高抗
江西 Jiangxi11421.75379.2, 5 333.6
四川 Sichuan3213.13303.3
浙江 Zhejiang2300
重庆 Chongqing300
表2  柑橘黑斑病菌种群对多菌灵抗性水平评价
图1  柑橘和柚黑斑病菌部分β-微管蛋白基因扩增结果M:DNA分子质量标志物;CK:对照(双蒸水)。
图 2  柑橘黑斑病菌β-微管蛋白基因部分氨基酸序列比对
图 3  柑橘黑斑病菌β-微管蛋白基因部分核苷酸序列比对

来源

Source

敏感菌株1)

Cab-S isolates1)

抗性菌株2)

Cab-R isolates2)

抗性频率

Resistance frequency/%

抗性系数

Coefficient of resistance

总计 Total12210.82高抗
广东 Guangdong5411.8513 719.5
广西 Guangxi3400
福建 Fujian3400
表3  柚黑斑病菌种群对多菌灵抗性水平评价
图 4  柚黑斑病菌β-微管蛋白基因部分氨基酸序列比对
图 5  柚黑斑病菌β-微管蛋白基因部分核苷酸序列比对
1 BESON A H. Black spot of the orange. Agricultural Gazette of New South Wales, 1895(6):249.
2 KIELYI T B. Fungicidal sprays and their influence on disease, quality, and blemish in Valencia oranges at Mangrove Mountain. Agricultural Gazette of New South Wales, 1968,79(10):613-620.
3 European and Mediterranean Plant Protection Organization, Centre for Agriculture and Bioscience International. Guignardia citricarpa//SMITH I M, MCNAMARA D G, SCOTT P R, et al. Quarantine Pests for Europe. 2nd ed. Wallingford, UK: CABI, 1997:1425.
4 European and Mediterranean Plant Protection Organization, Centre for Agriculture and Bioscience International. Guignardia citricarpa//Bulletin. [S. l.: s. n.], 2009:39.
5 SPOSITO M B, AMORIM L, RIBEIRO P J JR, et al. Spatial pattern of trees affected by black spot in citrus groves in Brazil. Plant disease, 2007,91(1):36-40.
6 王卫芳,钟国强,胡佳,等.梅州柑橘黑斑病病原研究初报//中国植物病理学会2008年学术年会论文集,2008:65.
WANG W F, ZHONG G Q, HU J, et al. Early report of the pathogen of citrus black spot in Meizhou City//Proceedings of 2008 Annual Conference of Chinese Society of Plant Pathology, 2008:65 (in Chinese)
7 蒲占湑,黄振东,黄茜斌,等.台州地区柑橘黑斑病的发生状况与防治措施.浙江柑桔,2009,26(4):33-35.
PU Z X, HUANG Z D, HUANG Q B, et al. Occurrence and management of citrus black spot in Taizhou City. Zhejiang Citrus, 2009,26(4):33-35. (in Chinese)
8 张文梅,黄河,宋水林,等.培养条件对柑橘黑斑病菌丝生长的影响.江西植保,2011,34(4):151-153.
ZHANG W M, HUANG H, SONG S L, et al. Influences of the growth of the mycelia of Phyllosticta citricarpa under different cultivate conditions. The Plant Protection of Jiangxi Province, 2011,34(4):151-153. (in Chinese)
9 罗金水,卢松茂,余智城,等.柑橘黑斑病新病原亚洲柑橘叶点霉生物学特性.福建农业学报,2016,31(2):170-174.
LUO J S, LU S M, YU Z C, et al. Biological characteristics of Phyllosticta citriasiana, a new pathogen causing black spot disease on Citrus plants. Fujian Journal of Agricultural Sciences, 2016,31(2):170-174. (in Chinese with English abstract)
10 王兴红,陈国庆,李红叶.中国柑橘黑斑病相关叶点霉属(Phyllosticta)真菌种类研究//中国菌物学会第五届会员代表大会暨2011年学术年会论文摘要集,2011.
WANG X H, CHEN G Q, LI H Y. Phyllosticta species associated with citrus disease in China//The Fifth Congress of Chinese Society of Fungi and the 2011 Annual Meeting Abstracts Sets, 2011. (in Chinese)
11 BAAYEN R P, BONANTS P, VERKLEY G, et al. Nonpathogenic isolates of the citrus black spot fungus, Guignardia citricarpa, identified as a cosmopolitan endophyte of woody plants, G. mangiferae (Phyllosticta capitalensis). Phytopathology, 2002,92(5):464-477.
12 KIELY T B. Preliminary studies on Guignardia citricarpa, n. sp.: the ascigerous stage of Phoma citricarpa McAlpline and its relation to black spot of citrus. Proceedings of the Linnean Society of New South Wales, 1948,73(516):249-292.
13 CHUNG K R, PERES N, TIMMER L W. Citrus diseases exotic to Florida: black spot//UF/IFASEDIS (Electronic Data Information Systems) Database (Fact Sheet PP-213), 2005. .
14 WULANDARI N F, TO-ANUN C, HYDE K D, et al. Phyllosticta citriasiana sp. nov., the cause of citrus tan spot of Citrus maxima in Asia. Fungal Diversity, 2009,34:23-39.
15 王兴红.中国柑橘黑斑病相关的叶点霉属真菌种类、遗传多样性和快速诊断技术研究.杭州:浙江大学,2012.
WANG X H. Species, genetic diversity and rapid identification of Phyllosticta associated with citrus black spot in China. Hangzhou: Zhejiang University, 2012. (in Chinese with English abstract)
16 WANG X H, CHEN G Q, HUANG F, et al. Phyllosticta species associated with Citrus diseases in China. Fungal Diversity, 2012,52(1):209-224.
17 WARE G. The Pesticide Book. 6th ed. Willoughby, USA: Meister Media Worldwide, 2004.
18 RUSSEL P E. A century of fungicide evolution. Journal of Agricultural Science-Cambridge, 2005,143(1):11-25.
19 ISHII H. Fungicides, Tubulin-Binding Compounds. Hoboken, USA: John Wiley & Sons, Incorporated, 2003.
20 FUJIMURA M, OEDA K, INOUE H, et al. A single amino-acid substitution in the Beta-Tubulin gene of neurospora confers both carbendazim resistance and diethofencarb sensitivity. Current Genetics, 1992,21(4/5):399-404.
21 ALBERTINI C, GREDT M, LEROUX P. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis. Pesticide Biochemistry & Physiology, 1999,64(1):17-31.
22 YARDEN O. Mutations leading to substitutions at amino acids 198 and 200 of Beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology, 1993,83(12):1478-1483.
23 POSSIEDE Y M, GABARDO J, KAVACORDEIRO V, et al. Fungicide resistance and genetic variability in plant pathogenic strains of Guignardia citricarpa. Brazilian Journal of Microbiology, 2009,40(2):308-313.
24 冯丹,孙学鹏,姜丽英,等.浙江衢州地区柑橘绿霉病菌对抑霉唑和多菌灵的抗性水平及其分子机制.农药学学报,2011,13(4):341-346.
FENG D, SUN X P, JIANG L Y, et al. Resistance level and mechanism of Penicillium digitatum to imazalil and carben-dazim in Quzhou, Zhejiang. Chinese Journal of Pesticide Science, 2011,13(4):341-346. (in Chinese with English abstract)
25 王兴红.柑橘叶点霉属(Phyllosticta spp.)真菌的遗传多样性分析.植物病理学报,2018,48(1):46-54.
WANG X H. Genetic diversity of Phyllosticta species associated with Citrus spp. in China. Acta Phytopathologica Sinica, 2018,48(1):46-54. (in Chinese with English abstract)
26 CHOI Y W, HYDE K D, HO W H. Single-spore isolation using a hand-made glass needle. Fungal Diversity, 1999,2:47-63.
27 FAO. Recommend methods for the detection and measurement of resistance of agricultural pests to pesticides. FAO Plant Protection Bulletin,1982,30(2):30-36.
28 周明国,王建新.禾谷镰孢菌对多菌灵的敏感性基线及抗药性菌株生物学性质研究.植物病理学报,2001,31(4):365-370.
ZHOU M G, WANG J X. Study on sensitivity base-line of Fusarium graminearum to carbendazim and biological characters of MBC-resistant strains. Acta Phytopathologica Sinica, 2001,31(4):365-370. (in Chinese with English abstract)
29 刘波,刘经芬,叶钟音.灰霉病菌对苯并咪唑类杀菌剂的抗药性监测及抗性生理的研究.莱阳农学院学报,1991,8(3):217-222.
LIU B, LIU J F, YE Z Y. Detection of resistance of grey mould to benzimidazoles and the study on the physiology of the resistant strains. Journal of Laiyang Agricultural College, 1991,8(3):217-222. (in Chinese with English abstract)
30 KOENRAADT H. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology, 1992,82(11):1348.
31 李红霞,陆悦健,周明国,等.油菜菌核病菌β-微管蛋白基因与多菌灵抗药性相关突变的研究.中国油料作物学报,2003,25(2):57-61.
LI H X, LU Y J, ZHOU M G, et al. Mutation in β-tubulin of Sclerotinia sclerotiorum conferring resistance to carbendazim in rapeseed field isolates. Chinese Journal of Oil Crop Sciences, 2003,25(2):57-61. (in Chinese with English abstract)
[1] 张吉顺, 张孝廉, 王仁刚, 谢升东, 王轶, 任学良. 环境胁迫影响植物开花的分子机制[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3): 289-305.
[2] 姚洪渭  蒋彩英  叶恭银  程家安. 白背飞虱羧酸酯酶与乙酰胆碱酯酶的体躯与亚细胞分布特征[J]. 浙江大学学报(农业与生命科学版), 2001, 27(1): 5-10.