Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2016, Vol. 17 Issue (12): 941-951    DOI: 10.1631/jzus.B1600243
Articles     
Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion
Tao Bao, Ye Wang, Yu-ting Li, Vemana Gowd, Xin-he Niu, Hai-ying Yang, Li-shui Chen, Wei Chen, Chong-de Sun
Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, the State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; Nutrition and Health Research Institute, COFCO Ltd., Beijing 102209, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Oxidative stress and diabetes have a tendency to alter protein, lipid, and DNA moieties. One of the strategic methods used to reduce diabetes-associated oxidative stress is to inhibit the carbohydrate-digesting enzymes, thereby decreasing gastrointestinal glucose production. Plant-derived natural antioxidant molecules are considered a therapeutic tool in the treatment of oxidative stress and diabetes. The objective of this study was to identify tartary buckwheat rice flavonoids and evaluate the effect of in vitro digestion on their antioxidant and antidiabetic properties. High performance liquid chromatography (HPLC) analysis indicated the presence of rutin as a major component and quercitrin as a minor component of both digested and non-digested flavonoids. Both extracts showed a significant antioxidant capacity, but digested flavonoids showed reduced activity compared to non-digested. There were some decreases of the antioxidant activities (2,2\'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH) radical, and ferric reducing antioxidant power (FRAP)) of digested tartary buckwheat rice flavonoids compared with non-digested. Flavonoids from both groups significantly inhibited reactive oxygen species (ROS) production and α-glucosidase activity. Both digested and non-digested flavonoids markedly increased glucose consumption and glycogen content in HepG2 cells. Tartary buckwheat rice flavonoids showed appreciable antioxidant and antidiabetic properties, even after digestion. Tartary buckwheat rice appears to be a promising functional food with potent antioxidant and antidiabetic properties.

Key wordsTartary buckwheat rice      Flavonoids      In vitro digestion      Antioxidant activity      Antidiabetic activity     
Received: 30 May 2016      Published: 05 December 2016
CLC:  TQ041+.8  
  TS213  
Cite this article:

Tao Bao, Ye Wang, Yu-ting Li, Vemana Gowd, Xin-he Niu, Hai-ying Yang, Li-shui Chen, Wei Chen, Chong-de Sun. Antioxidant and antidiabetic properties of tartary buckwheat rice flavonoids after in vitro digestion. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(12): 941-951.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.B1600243     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2016/V17/I12/941

[1] Fei Han, Guang-qiang Ma, Ming Yang, Li Yan, Wei Xiong, Ji-cheng Shu, Zhi-dong Zhao, Han-lin Xu. Chemical composition and antioxidant activities of essential oils from different parts of the oregano[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2017, 18(1): 79-84.
[2] Zhuo-ping Yu, Dong-dong Xu, Lai-feng Lu, Xiao-dong Zheng, Wei Chen. Immunomodulatory effect of a formula developed from American ginseng and Chinese jujube extracts in mice[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(2): 147-157.
[3] Sitthichai Iamsaard, Jaturon Burawat, Pipatpong Kanla, Supatcharee Arun, Wannisa Sukhorum, Bungorn Sripanidkulchai, Nongnut Uabundit, Jintanaporn Wattathorn, Wiphawi Hipkaeo, Duriya Fongmoon, Hisatake Kondo. Antioxidant activity and protective effect of Clitoria ternatea flower extract on testicular damage induced by ketoconazole in rats[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(6): 548-555.
[4] Sitthichai Iamsaard, Supatcharee Arun, Jaturon Burawat, Wannisa Sukhorum, Jintanaporn Wattanathorn, Somsak Nualkaew, Bungorn Sripanidkulchai. Phenolic contents and antioxidant capacities of Thai-Makham Pom (Phyllanthus emblica L.) aqueous extracts[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 405-408.
[5] Shiau Mei Woon, Yew Wei Seng, Anna Pick Kiong Ling, Soi Moi Chye, Rhun Yian Koh. Anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidea and var. angustifolia on 3T3-L1 adipocytes[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(3): 295-302.
[6] Yue-fei Wang, Jie Wang, Jing Wu, Ping Xu, Yi-qi Wang, Jun-jie Gao, Danielle Hochstetter. In vitro antioxidant activity and potential inhibitory action against α-glucosidase of polysaccharides from fruit peel of tea (Camellia sinensis L.)[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(2): 173-180.
[7] Xiao-xin Chen, Xiao-bing Wu, Wei-ming Chai, Hui-ling Feng, Yan Shi, Han-tao Zhou, Qing-xi Chen. Optimization of extraction of phenolics from leaves of Ficus virens[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(10): 903-915.
[8] Wu-yang Huang, Hong-cheng Zhang, Wen-xu Liu, Chun-yang Li. Survey of antioxidant capacity and phenolic composition of blueberry, blackberry, and strawberry in Nanjing[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(2): 94-102.
[9] Jie Gao, Cui-rong Sun, Jie-hong Yang, Jian-mei Shi, Yue-guang Du, Yu-yan Zhang, Jin-hui Li, Hai-tong Wan. Evaluation of the hepatoprotective and antioxidant activities of Rubus parvifolius L.[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(2): 135-142.
[10] Yong-liang ZHUANG, Xue ZHAO, Ba-fang LI. Optimization of antioxidant activity by response surface methodology in hydrolysates of jellyfish (Rhopilema esculentum) umbrella collagen[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2009, 10(8): 572-579.
[11] Jing ZHOU, Nan HU, Ya-lin WU, Yuan-jiang PAN, Cui-rong SUN. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2008, 9(9): 721-727.
[12] HE Guo-qing, XIONG Hao-ping, CHEN Qi-he, RUAN Hui, WANG Zhao-yue, TRAORÉ Lonseny. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6(10): 999-1004.