Please wait a minute...
Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology)  2005, Vol. 6 Issue (7): 699-704    DOI: 10.1631/jzus.2005.B0699
Biomedicine     
Effects of IGF-II on promoting proliferation and regulating nitric oxide synthase gene expression in mouse osteoblast-like cell
SUN Wei-lian, CHEN Li-li, YAN Jie, YU Zhong-sheng
Department of Stomatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China; Department of Medical Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou 310006, China; Affiliated Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Objective: To investigate the effects of insulin-like growth factor II (IGF-II) on promoting cell proliferation, regulating levels of cellular nitric oxide (NO) and mRNA transcriptions of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) in mouse osteoblast-like cells. Methods: Mouse osteoblastic cell line MC3T3-E1 was selected as the effective cell of IGF-II. After the cells were treated with IGF-II at different concentrations for different time duration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay was used to examine cell proliferation, and nitrate reductase method was applied to detect NO concentrations in cell culture supernatants and quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was employed to determine transcription levels of cellular iNOS and eNOS mRNAs. Results: After the MC3T3-E1 cells were treated with IGF-II at concentration of 1 ng/ml for 72 h, 10 and 100 ng/ml for 24, 48 and 72 h respectively, all the MTT values increased (P<0.05 or P<0.01) with obvious dosage-time dependent pattern. NO levels of the MC3T3-E1 cells treated with 100 ng/ml IGF-II for 48 h, and with 1, 10 and 100 ng/ml IGF-II for 72 h were remarkably lower than that of the normal control, respectively (P<0.05 or P<0.01). After the cells were treated with 100 ng/ml IGF-II for 48 h cellular iNOS mRNA levels were significantly decreased (P<0.01). But the levels of eNOS mRNA in the cells treated with each of the used IGF-II dosages for different time duration did not show any differences compared with the normal control (P>0.05). Conclusion: IGF-II at different concentrations could promote proliferation of mouse MC3T3-E1 cell. This cell proliferation promotion was associated with the low NO levels maintained by IGF-II. Higher concentration of IGF-II could down-regulate iNOS gene expression at the level of transcription but not affect transcription of eNOS mRNA, which might be one of the mechanisms for IGF-II maintenance of the low NO levels in MC3T3-E1 cells.

Key wordsInsulin-like growth factor II      Osteoblast      Proliferation      Nitric oxide synthase      Nitric oxide      Regulation     
Received: 01 December 2004     
CLC:  R781.4  
Cite this article:

SUN Wei-lian, CHEN Li-li, YAN Jie, YU Zhong-sheng. Effects of IGF-II on promoting proliferation and regulating nitric oxide synthase gene expression in mouse osteoblast-like cell. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2005, 6(7): 699-704.

URL:

http://www.zjujournals.com/xueshu/zjus-b/10.1631/jzus.2005.B0699     OR     http://www.zjujournals.com/xueshu/zjus-b/Y2005/V6/I7/699

[1] Jing Zhao, Shi-wei Li, Qian-qian Gong, Ling-cui Ding, Ye-cheng Jin, Jian Zhang, Jian-gang Gao, Xiao-yang Sun. A disputed evidence on obesity: comparison of the effects of Rcan2−/− and Rps6kb1−/− mutations on growth and body weight in C57BL/6J mice[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(9): 657-671.
[2] Chen Chen, Yang-yang Fan, Xin Wang, Fei Song, Tao Jiang, Ping Qian, Shun-Ming Tang, Xing-Jia Shen. bmo-miR-0001 and bmo-miR-0015 down-regulate expression of Bombyx mori fibroin light chain gene in vitro[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(2): 127-135.
[3] Qian-nan Diao, Yong-jun Song, Dong-mei Shi, Hong-yan Qi. Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2016, 17(12): 916-930.
[4] Chun-qi Gao, Yin-ling Zhao, Hai-chang Li, Wei-guo Sui, Hui-chao Yan, Xiu-qi Wang. Heat stress inhibits proliferation, promotes growth, and induces apoptosis in cultured Lantang swine skeletal muscle satellite cells[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(6): 549-559.
[5] Lei Zhang, Yan-wen Wang, Zhi-qiang Lu. Midgut immune responses induced by bacterial infection in the silkworm, Bombyx mori[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2015, 16(10): 875-882.
[6] Rong-gang Ma, Yang Zhang, Ting-ting Sun, Bo Cheng. Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(5): 412-428.
[7] Peng-yan Qiao, Fang-fang Li, Li-min Dong, Tao Xu, Qiu-fei Xie. Delivering MC3T3-E1 cells into injectable calcium phosphate cement through alginate-chitosan microcapsules for bone tissue engineering[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(4): 382-392.
[8] He-qing Zhan, Ling Xia, Guo-fa Shou, Yun-liang Zang, Feng Liu, Stuart Crozier. Fibroblast proliferation alters cardiac excitation conduction and contraction: a computational study[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2014, 15(3): 225-242.
[9] Nadeem Akhtar Abbasi, Tariq Pervaiz, Ishfaq Ahmed Hafiz, Mehwish Yaseen, Azhar Hussain. Assessing the response of indigenous loquat cultivar Mardan to phytohormones for in vitro shoot proliferation and rooting[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(9): 774-784.
[10] Yue Zhang, Ying-ke Li. MicroRNAs in the regulation of immune response against infections[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2013, 14(1): 1-7.
[11] Chen Gao, Yibin Wang. Global impact of RNA splicing on transcriptome remodeling in the heart[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(8): 603-608.
[12] Rui Bai, Zhong Shi, Jia-wei Zhang, Dan Li, Yong-liang Zhu, Shu Zheng. ST13, a proliferation regulator, inhibits growth and migration of colorectal cancer cell lines[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(11): 884-893.
[13] Yu-li Huang, Ruo-feng Qiu, Wei-yi Mai, Jian Kuang, Xiao-yan Cai, Yu-gang Dong, Yun-zhao Hu, Yuan-bin Song, An-ping Cai, Zhi-gao Jiang. Effects of insulin-like growth factor-1 on the properties of mesenchymal stem cells in vitro[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2012, 13(1): 20-28.
[14] Jin-xing Lin, Yu-dong Jia, Cai-qiao Zhang. Effect of epidermal growth factor on follicle-stimulating hormone-induced proliferation of granulosa cells from chicken prehierarchical follicles[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(11): 875-883.
[15] Wei Zhang, Quan-wei Wei, Zheng-chao Wang, Wei Ding, Wei Wang, Fang-xiong Shi. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and the related nitric oxide/cyclic GMP signaling pathway in the ovaries of neonatal and immature rats[J]. Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology), 2011, 12(1): 55-64.