Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2015, Vol. 16 Issue (1): 47-58    DOI: 10.1631/jzus.A1300408
Civil Engineering     
Design-oriented modeling of circular FRP-wrapped concrete columns after sustained axial compression
Hui Liu, Ming-hua He, Jia Guo, Yong-jiu Shi, Zhao-xin Hou, Lu-lu Liu
Department of Civil Engineering, Tsinghua University, Beijing 100084, China; Central Research Institute of Building and Construction Co., Ltd., China Metallurgical Group Corporation, Beijing 100023, China; Research Institute of Highway of China Ministry of Transport, Beijing 100088, China; Institute of Chemical Machinery, Zhejiang University, Hangzhou 310027, China; College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Fiber-reinforced plastic-wrapped concrete columns (FRP-C) have been extensively used in building structures and transportation infrastructures around the world during the past two decades. These members are actually subjected to a long-term sustained axial compression before they experience the designated ultimate loading. However, little attention has been given to the performance of FRP-C after sustained axial compression compared with that of its short-term instant performance. This study aims to establish a design-oriented numerical model for the long-term deformation of circular FRP-C after sustained load. A modified constitutive model of FRP-wrapped concrete is proposed for numerical analysis of FRP-C considering two dominant effects of sustained axially compressive loading. Numerical verifications against existing tests indicates that the ultimate strength will be slightly enhanced while the ultimate strain will be conspicuously reduced in most cases of normal strength FRP-C after a long-term sustained load.

Key wordsFiber-reinforced plastic (FRP)      Sustained load      Column      Long-term deformation      Creep      Constitutive model      Axial compression     
Received: 28 December 2013      Published: 04 January 2015
CLC:  TU50  
Cite this article:

Hui Liu, Ming-hua He, Jia Guo, Yong-jiu Shi, Zhao-xin Hou, Lu-lu Liu. Design-oriented modeling of circular FRP-wrapped concrete columns after sustained axial compression. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(1): 47-58.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300408     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2015/V16/I1/47

[1] Fang He, Zhenhua Huang. Characteristics of orifices for modeling nonlinear power take-off in wave-flume tests of oscillating water column devices[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2017, 18(5): 329-345.
[2] Xiao-chuan Liu, Wen-jie Xu, Liang-tong Zhan, Yun-min Chen. Laboratory and numerical study on an enhanced evaporation process in a loess soil column subjected to heating[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 553-564.
[3] Xin-sheng Yin, Ren-peng Chen, Yu-chao Li, Shuai Qi. A column system for modeling bentonite slurry infiltration in sands[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 818-827.
[4] Hui-ming Wang, Shao-xing Qu. Constitutive models of artificial muscles: a review[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 22-36.
[5] Liang Ye, Yin-fu Jin, Shui-long Shen, Ping-ping Sun, Cheng Zhou. An efficient parameter identification procedure for soft sensitive clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(1): 76-88.
[6] Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 749-759.
[7] Ting-chun Li, Lian-xun Lyu, Shi-lin Zhang, Jie-cheng Sun. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 644-655.
[8] Xiang-yu Shang, Guo-qing Zhou, Yong Lu. Stress-dependent undrained shear behavior of remolded deep clay in East China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(3): 171-181.
[9] Xiao-bin Song, Ya-jie Wu, Rui Jiang. Compressive capacity of longitudinally cracked wood columns retrofitted by self-tapping screws[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(12): 964-975.
[10] Qi-yin Zhu, Ze-xiang Wu, Yan-ling Li, Chang-jie Xu, Jian-hua Wang, Xiao-he Xia. A modified creep index and its application to viscoplastic modelling of soft clays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 272-281.
[11] Qiang Xu, Jian-yun Chen, Jing Li, Hong-yuan Yue. A study on the contraction joint element and damage constitutive model for concrete arch dams[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(3): 208-218.
[12] Zhi-gang Shan, Sheng-jie Di. Loading-unloading test analysis of anisotropic columnar jointed basalts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 603-614.
[13] Yu-jun Cui, Trong Vinh Duong, Anh Minh Tang, Jean-Claude Dupla, Nicolas Calon, Alain Robinet. Investigation of the hydro-mechanical behaviour of fouled ballast[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 244-255.
[14] Qiang Xu, Jian-yun Chen, Jing Li, Gang Xu. Coupled elasto-plasticity damage constitutive models for concrete[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(4): 256-267.
[15] Zhe Xu, Jian-guo Cai, Bing-cai Pan. Mathematically modeling fixed-bed adsorption in aqueous systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 155-176.