1 Department of Civil Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China 2 State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 3 LUNAM University, Ecole Centrale de Nantes, GeM UMR CNRS, 6183, Nantes, France 4 Department of Civil Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China 5 State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
The creep and destructuration characteristics of soft clay are always coupled under loading, making it difficult for engineers to determine these related parameters. This paper proposes a simple and efficient optimization procedure to identify both creep and destructuration parameters based on low cost experiments. For this purpose, a simplex algorithm (SA) with random samplings is adopted in the optimization. Conventional undrained triaxial tests are performed on Wenzhou clay. The newly developed creep model accounting for the destructuration is enhanced by anisotropy of elasticity and adopted to simulate tests. The optimal parameters are validated first by experimental measurements, and then by simulating other tests on the same clay. Finally, the proposed procedure is successfully applied to soft Shanghai clay. The results demonstrate that the proposed optimization procedure is efficient and reliable in identifying creep and destructuration related parameters.
Received: 05 February 2015
Published: 06 January 2016
Fund: the National Natural Science Foundation of China(No. 41372283);the European Project CREEP(No. PIAPP-GA-2011-286397);the French Ministry of Research through ANR-RISMOGEO
Corresponding Authors:
Liang Ye,Yin-fu Jin
E-mail: yeliang88@126.com;yinfu.jin9019@gmail.com
Fig. 1 Structure of Nelder-Mead simplex algorithm after Nelder and Mead (1965) pr, pe, pout, and pin are the points generated by the reflection, expansion, outside contraction, and inside contraction, respectively
Fig. 2 Definitions for the model in p′-q space (a) and 1D compression condition (b) (Yin et al., 2011a) σ′p0 and σ′pi0 are the pre-consolidated pressures for the natural sample and reconstituted sample, respectively; Knc is the coefficient of lateral pressure for normally consolidated clay
Group
Parameter
Definition
Determination
Modified Cam clay parameters
$\sigma_{{\text{p0}}}^{'\text{r}}$
Initial reference preconsolidation pressure
From a selected oedometer test whose loading-rate is used as reference strain-rate
e0
Initial void ratio (state parameter)
From oedometer test
υ
Poisson’s ratio
From initial part of stress-strain curve (typically varying from 0.15 to 0.35)
κ
Slope of the swelling line
From 1D or isotropic consolidation test
λi
Intrinsic slope of the compression line
From 1D or isotropic consolidation test
M
Slope of the critical state line
From triaxial shear test
Anisotropy parameters
α0
Initial anisotropy (state parameter for calculating initial components of the fabric tensor)
For K0-consolidated samples by P[1]§
Ω
Absolute rate of yield surface rotation
Calculated by Eq. (7)
Destructuration parameters
χ0
Initial bonding ratio
From shear vane test or oedometer test by P[2]§
ξ
Absolute rate of bond degradation
From consolidation tests with two different stress ratios η=q/p′, e.g., oedometer test and isotropic consolidation test, calculated by P[3]§
ξd
Relative rate of bond degradation
Viscosity parameters
Cαei
Secondary compression coefficient for reconstituted clay
From 24 h oedometer test on remoulded sample
Hydraulic parameters
kv0, kh0
Initial vertical and horizontal permeability
From oedometer tests
ck
Permeability coefficient
From curve e-logk
Table 1State parameters and soil constants of an elastic viscoplastic model
Clay
Depth (m)
Density, γ (kN/m3)
e0
Water content, w (%)
Liquid limit, wL (%)
Plastic limit, wP (%)
σ′p0 (kPa)
σ′v0 (kPa)
Wenzhou
10.5–11.5
15.5
1.895
67.5
63.4
27.6
81.3
75.4
Shanghai
10
17.7
1.402
51.8
44.2
22.4
110.5
68.6
Table 2Physical properties typical of Wenzhou marine clay and soft Shanghai clay
Table 3Interval of creep and destructuration related parameters of the model for optimization
Fig. 5Distribution of “satisfactory” solutions generated during optimization of the SA
Fig. 6Distribution of satisfactory solutions obtained by the SA
Clay
Optimal parameter
Objective error (%)
Cαei
χ0
ξ
ξd
Wenzhou
0.0032
8.5
13.0
0.24
8.85
Shanghai
0.0025
4.0
9.5
0.45
17.21
Table 4Optimal sets of parameters with objective error
Fig. 71D compression results of intact and reconstituted Wenzhou clay
Fig. 8Relationship between Cαe and λ for Wenzhou marine clay
Fig. 9Comparisons between simulated and measured results of a CRS oedometer test with axial strain-rate varying between 0.2%/h and 20%/h
Fig. 10Comparisons between simulated and measured results of objective tests in compression (a and b) and corresponding extension (c and d) at initial vertical stresses of 75.4, 150, and 300 kPa
Fig. 11 Comparisons between simulated and measured results of undrained triaxial CRS tests in compression (a and b) and extension (c and d) at an initial vertical stress of 75.4 kPa CAUC: anisotropic consolidation undrained compression; CAUE: anisotropic consolidation undrained extension
Fig. 12Triaxial test results on Shanghai clay: (a) axial strain-deviatoric stress; (b) stress path
Fig. 13Simulations of objective tests of Shanghai clay using optimal parameters
Fig. 14Simulated results of tests on isotropically consolidated Shanghai clay with different confining pressuresCIUC: isotropic consolidation undrained compression
[1]
ASTM (American Society for Testing and Materials) Annual Book of ASTM Standards. 2004, Philadelphia, PA, USA: ASTM
[2]
Biarez J, Hicher PY . Elementary mechanics of soil behaviour: saturated remoulded soils. 1994, Rotterdam, the Netherlands: AA Balkema
[3]
Calvello M, Finno RJ . Selecting parameters to optimize in model calibration by inverse analysis. Computers and Geotechnics. 2004, 31(5): 410-424 doi: 10.1016/j.compgeo.2004.03.004
doi: 10.1016/j.compgeo.2004.03.004
[4]
Chang CS, Yin ZY . Micromechanical modeling for inherent anisotropy in granular materials. Journal of Engineering Mechanics. 2010, 136(7): 830-839 doi: 10.1061/(ASCE)EM.1943-7889.0000125
doi: 10.1061/(ASCE)EM.1943-7889.0000125
[5]
Dano C, Hicher PY, Rangeard D et al. Interpretation of dilatometer tests in a heavy oil reservoir. International Journal for Numerical and Analytical Methods in Geomechanics. 2007, 31(10): 1197-1215 doi: 10.1002/nag.583
doi: 10.1002/nag.583
[6]
Huang M, Liu Y, Sheng D . Simulation of yielding and stress–stain behavior of Shanghai soft clay. Computers and Geotechnics. 2011, 38(3): 341-353 doi: 10.1016/j.compgeo.2010.12.005
doi: 10.1016/j.compgeo.2010.12.005
[7]
Karstunen M, Yin ZY . Modelling time-dependent behaviour of Murro test embankment. Géotechnique. 2010, 60(10): 735-749 doi: 10.1680/geot.8.P.027
doi: 10.1680/geot.8.P.027
[8]
Lagarias JC, Reeds JA, Wright MH et al. Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization. 1998, 9(1): 112-147 doi: 10.1137/S1052623496303470
doi: 10.1137/S1052623496303470
[9]
Lecampion B, Constantinescu A, Nguyen Minh D . Parameter identification for lined tunnels in a viscoplastic medium. International Journal for Numerical and Analytical Methods in Geomechanics. 2002, 26(12): 1191-1211 doi: 10.1002/nag.241
doi: 10.1002/nag.241
[10]
Leroueil S, Vaughan PR . The general and congruent effects of structure in natural soils and weak rocks. Géotechnique. 1990, 40(3): 467-488 doi: 10.1680/geot.1990.40.3.467
doi: 10.1680/geot.1990.40.3.467
[11]
Levasseur S, Malécot Y, Boulon M et al. Soil parameter identification using a genetic algorithm. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, 32(2): 189-213 doi: 10.1002/nag.614
doi: 10.1002/nag.614
[12]
McKay MD, Beckman RJ, Conover WJ . Comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 1979, 21(2): 239-245 doi: 10.1080/00401706.1979.10489755
doi: 10.1080/00401706.1979.10489755
[13]
Nelder JA, Mead R . A simplex method for function minimization. The Computer Journal. 1965, 7(4): 308-313 doi: 10.1093/comjnl/7.4.308
doi: 10.1093/comjnl/7.4.308
[14]
Papon A, Riou Y, Dano C et al. Single- and multi-objective genetic algorithm optimization for identifying soil parameters. International Journal for Numerical and Analytical Methods in Geomechanics. 2012, 36(5): 597-618 doi: 10.1002/nag.1019
doi: 10.1002/nag.1019
[15]
Sheng D, Sloan S, Yu H . Aspects of finite element implementation of critical state models. Computational Mechanics. 2000, 26(2): 185-196 doi: 10.1007/s004660000166
doi: 10.1007/s004660000166
[16]
Wang L, Yin Z . Stress dilatancy of natural soft clay under an undrained creep condition. International Journal of Geomechanics. 2015, 15(5): A4014002 doi: 10.1061/(ASCE)GM.1943-5622.0000271
doi: 10.1061/(ASCE)GM.1943-5622.0000271
[17]
Yin ZY, Hicher PY . Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing. International Journal for Numerical and Analytical Methods in Geomechanics. 2008, 32(12): 1515-1535 doi: 10.1002/nag.684
doi: 10.1002/nag.684
[18]
Yin ZY, Chang CS . Microstructural modelling of stress-dependent behaviour of clay. International Journal of Solids and Structures. 2009, 46(6): 1373-1388 doi: 10.1016/j.ijsolstr.2008.11.006
doi: 10.1016/j.ijsolstr.2008.11.006
[19]
Yin ZY, Karstunen M . Modelling strain-rate-dependency of natural soft clays combined with anisotropy and destructuration. Acta Mechanica Solida Sinica. 2011, 24(3): 216-230 doi: 10.1016/S0894-9166(11)60023-2
doi: 10.1016/S0894-9166(11)60023-2
[20]
Yin ZY, Wang JH . A one-dimensional strain-rate based model for soft structured clays. Science China Technological Sciences. 2012, 55(1): 90-100 doi: 10.1007/s11431-011-4513-y
doi: 10.1007/s11431-011-4513-y
[21]
Yin ZY, Chang CS, Karstunen M et al. An anisotropic elastic-viscoplastic model for soft clays. International Journal of Solids and Structures. 2010, 47(5): 665-677 doi: 10.1016/j.ijsolstr.2009.11.004
doi: 10.1016/j.ijsolstr.2009.11.004
[22]
Yin ZY, Karstunen M, Hicher PY . Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays. Soils and Foundations. 2010, 50(2): 203-214 doi: 10.3208/sandf.50.203
doi: 10.3208/sandf.50.203
[23]
Yin ZY, Chang CS, Hicher PY . Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. International Journal of Solids and Structures. 2010, 47(14-15): 1933-1951 doi: 10.1016/j.ijsolstr.2010.03.028
doi: 10.1016/j.ijsolstr.2010.03.028
[24]
Yin ZY, Karstunen M, Chang CS et al. Modeling time-dependent behavior of soft sensitive clay. Journal of Geotechnical and Geoenvironmental Engineering. 2011, 137(11): 1103-1113 doi: 10.1061/(ASCE)GT.1943-5606.0000527
doi: 10.1061/(ASCE)GT.1943-5606.0000527
[25]
Yin ZY, Hattab M, Hicher PY . Multiscale modeling of a sensitive marine clay. International Journal for Numerical and Analytical Methods in Geomechanics. 2011, 35(15): 1682-1702 doi: 10.1002/nag.977
doi: 10.1002/nag.977
[26]
Yin ZY, Xu Q, Chang CS . Modeling cyclic behavior of clay by micromechanical approach. Journal of Engineering Mechanics. 2013, 139(9): 1305-1309 doi: 10.1061/(ASCE)EM.1943-7889.0000516
doi: 10.1061/(ASCE)EM.1943-7889.0000516
[27]
Yin ZY, Zhu QY, Yin JH et al. Stress relaxation coefficient and formulation for soft soils. Géotechnique Letters. 2014, 4(1): 45-51 doi: 10.1680/geolett.13.00070
doi: 10.1680/geolett.13.00070
[28]
Yin ZY, Xu Q, Yu C . Elastic viscoplastic modeling for natural soft clays considering nonlinear creep. International Journal of Geomechanics. 2015, 15(5): A6014001 doi: 10.1061/(ASCE)GM.1943-5622.0000284
doi: 10.1061/(ASCE)GM.1943-5622.0000284
[29]
Yin ZY, Yin JH, Huang HW . Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling. Marine Georesources and Geotechnology. 2015, 33(1): 79-91 doi: 10.1080/1064119X.2013.797060
doi: 10.1080/1064119X.2013.797060
[30]
Zeng LL . Deformation Mechanism and Compression Model of Natural Clays. 2010 Southeast University, Nanjing, China PhD Thesis (in Chinese)
[31]
Zhu QY, Jin YF, Yin ZY et al. Influence of natural deposition plane orientation on oedometric consolidation behavior of three typical clays from southeast coast of China. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering). 2013, 14(11): 767-777 doi: 10.1631/jzus.A1300156
doi: 10.1631/jzus.A1300156