Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2013, Vol. 14 Issue (3): 155-176    DOI: 10.1631/jzus.A1300029
Chemical Engineering     
Mathematically modeling fixed-bed adsorption in aqueous systems
Zhe Xu, Jian-guo Cai, Bing-cai Pan
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Adsorption is one of the widely used processes in the chemical industry environmental application. As compared to mathematical models proposed to describe batch adsorption in terms of isotherm and kinetic behavior, insufficient models are available to describe and predict fixed-bed or column adsorption, though the latter one is the main option in practical application. The present review first provides a brief summary on basic concepts and mathematic models to describe the mass transfer and isotherm behavior of batch adsorption, which dominate the column adsorption behavior in nature. Afterwards, the widely used models developed to predict the breakthrough curve, i.e., the general rate models, linear driving force (LDF) model, wave propagation theory model, constant pattern model, Clark model, Thomas model, Bohart-Adams model, Yoon-Nelson model, Wang model, Wolborska model, and modified dose-response model, are briefly introduced from the mechanism and mathematical viewpoint. Their basic characteristics, including the advantages and inherit shortcomings, are also discussed. This review could help those interested in column adsorption to reasonably choose or develop an accurate and convenient model for their study and practical application.

Key wordsColumn adsorption      Modeling      Fixed-bed adsorption      Breakthrough curve     
Received: 18 January 2013      Published: 04 March 2013
CLC:  X1  
Cite this article:

Zhe Xu, Jian-guo Cai, Bing-cai Pan. Mathematically modeling fixed-bed adsorption in aqueous systems. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(3): 155-176.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1300029     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2013/V14/I3/155

[1] Jin Wang, Ting Ge, Guo-dong Lu, Fei Li. A study of 3D finite element modeling method for stagger spinning of thin-walled tube[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(8): 646-666.
[2] Jie Xu, Chao Zhou. A simple model for the hysteretic elastic shear modulus of unsaturated soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(7): 589-596.
[3] Hai-bo Huo, Yi Ji, Xin-jian Zhu, Xing-hong Kuang, Yu-qing Liu. Control-oriented dynamic identification modeling of a planar SOFC stack based on genetic algorithm-least squares support vector regression[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(10): 829-839.
[4] David Poto?nik, Bojan Dol?ak, Miran Ulbin. GAJA: 3D CAD methodology for developing a parametric system for the automatic (re)modeling of the cutting components of compound washer dies[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(5): 327-340.
[5] Zhi-guo He, Gokmen Tayfur, Qi-hua Ran, Hao-xuan Weng. Modeling pollutant transport in overland flow over non-planar and non-homogenous infiltrating surfaces[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(2): 110-119.
[6] Jia-jin Zhou, Kui-hua Wang, Xiao-nan Gong, Ri-hong Zhang. Bearing capacity and load transfer mechanism of a static drill rooted nodular pile in soft soil areas[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(10): 705-719.
[7] Wei Lu, Yan-yong Xiang. Experiments and sensitivity analyses for heat transfer in a meter-scale regularly fractured granite model with water flow[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(12): 958-968.
[8] Jian Zhou, Qi-wei Jian, Jiao Zhang, Jian-jun Guo. Coupled 3D discrete-continuum numerical modeling of pile penetration in sand[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(1): 44-55.
[9] Young T. Chae, Kwang Ho Lee, Jae Sung Park. Improved thermal performance of a hydronic radiant panel heating system by the optimization of tube shapes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(6): 428-437.
[10] Ying-li Zhao, Jie Shi, Wen-quan Cao, Mao-qiu Wang, Gang Xie. Kinetics of austenite grain growth in medium-carbon niobium-bearing steel[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(3): 171-176.
[11] Gintaris Kaklauskas, Viktor Gribniak, Rokas Girdzius. Average stress-average strain tension-stiffening relationships based on provisions of design codes[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 731-736.
[12] Fan Yang, Bin Liu, Dai-ning Fang. Modeling of growth stress gradient effect on the oxidation rate at high temperature[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2010, 11(10): 789-793.
[13] Wen-guang WANG, Wei-ping WANG, Justyna ZANDER, Yi-fan ZHU. Three-dimensional conceptual model for service-oriented simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(8): 1075-1081.
[14] Wei-dong ZHANG, Feng CHEN, Wen-li XU. Bi-dimension decomposed hidden Markov models for multi-person activity recognition[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 810-819.
[15] Yi-qun DING, Shan-ping LI, Zhen ZHANG, Bin SHEN. Hierarchical topic modeling with nested hierarchical Dirichlet process[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2009, 10(6): 858-867.