Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2004, Vol. 5 Issue (7): 841-850    DOI: 10.1631/jzus.2004.0841
Systems Science & Engineering     
Delay-dependent robust H control for a class of uncertain switched systems with time delay
SHI Jia, WU Tie-jun, DU Shu-xin
National Key Lab for Industrial Control Technology; Institute of Intelligent Systems and Decision Making, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  For linear switched system with both parameter uncertainties and time delay, a delay-dependent sufficient condition for the existence of a new robust H feedback controller was formulated in nonlinear matrix inequalities solvable by an LMI-based iterative algorithm. Compared with the conventional state-feedback controller, the proposed controller can achieve better robust control performance since the delayed state is utilized as additional feedback information and the parameters of the proposed controllers are changed synchronously with the dynamical characteristic of the system. This design method was also extended to the case where only delayed state is available for the controller. The example of balancing an inverted pendulum on a cart demonstrates the effectiveness and applicability of the proposed design methods.

Key wordsLinear switched systems      Robust H control      Matrix inequality      Time delay     
Received: 30 September 2003     
CLC:  O231.5  
Cite this article:

SHI Jia, WU Tie-jun, DU Shu-xin. Delay-dependent robust H control for a class of uncertain switched systems with time delay. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5(7): 841-850.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2004.0841     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2004/V5/I7/841

[1] Yang Yu, Yue-quan Shang, Hong-yue Sun. Bending behavior of double-row stabilizing piles with constructional time delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(8): 596-609.
[2] Hui-jiao WANG, Xiao-dong ZHAO, An-ke XUE, Ren-quan LU. Delay-dependent robust control for uncertain discrete singular systems with time-varying delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1034-1042.
[3] Deng-feng ZHANG, Hong-ye SU, Jian CHU, Zhi-quan WANG. Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1024-1033.
[4] Wei QIAN, Guo-jiang SHEN, You-xian SUN. Dynamical output feedback stabilization for neutral systems with mixed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1043-1049.
[5] Mei-qin LIU, Sen-lin ZHANG, Gang-feng YAN. A new neural network model for the feedback stabilization of nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1015-1023.
[6] Hui-jiao WANG, An-ke XUE, Yun-fei GUO, Ren-quan LU. Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 546-551.
[7] Mei-qin LIU, Jian-hai ZHANG. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(2): 262-270.
[8] CHEN Yun, XUE An-ke, GE Ming, WANG Jian-zhong, LU Ren-quan. On exponential stability for systems with state delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(8): 1296-1303.
[9] ZHANG Jian-hai, ZHANG Sen-lin, LIU Mei-qin. Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(12): 1912-1920.
[10] Liu Mei-Qin. Stability analysis of neutral-type nonlinear delayed systems: An LMI approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 237-244.
[11] Xue An-Ke, Guo Yun-Fei. A new approach for target motion analysis with signal time delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 213-218.
[12] Liu Mei-qin. Interval standard neural network models for nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(4 ): 8-.
[13] BAI Lei-shi, HE Li-ming, TIAN Zuo-hua, SHI Song-jiao. Design of H robust fault detection filter for nonlinear time-delay systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(10): 16-.
[14] ZHANG Sen-lin, LIU Mei-qin. Stability analysis of discrete-time BAM neural networks based on standard neural network models*[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 7): 14-.
[15] ZHANG Sen-lin, LIU Mei-qin. LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 1): 5-.