Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2007, Vol. 8 Issue (12): 1912-1920    DOI: 10.1631/jzus.2007.A1912
Electrical & Electronic Engineering     
Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks
ZHANG Jian-hai, ZHANG Sen-lin, LIU Mei-qin
Department of System Science & Engineering, School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results.

Key wordsStandard neural network model (SNNM)      Robust exponential stability      Recurrent neural networks (RNNs)      Discrete-time      Time-delay system      Linear matrix inequality (LMI)     
Received: 02 March 2007     
CLC:  TP183  
Cite this article:

ZHANG Jian-hai, ZHANG Sen-lin, LIU Mei-qin. Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(12): 1912-1920.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2007.A1912     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2007/V8/I12/1912

[1] Hui-jiao WANG, Xiao-dong ZHAO, An-ke XUE, Ren-quan LU. Delay-dependent robust control for uncertain discrete singular systems with time-varying delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1034-1042.
[2] Deng-feng ZHANG, Hong-ye SU, Jian CHU, Zhi-quan WANG. Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1024-1033.
[3] Wei QIAN, Guo-jiang SHEN, You-xian SUN. Dynamical output feedback stabilization for neutral systems with mixed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1043-1049.
[4] Mei-qin LIU, Sen-lin ZHANG, Gang-feng YAN. A new neural network model for the feedback stabilization of nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1015-1023.
[5] Hui-jiao WANG, An-ke XUE, Yun-fei GUO, Ren-quan LU. Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 546-551.
[6] Mei-qin LIU, Jian-hai ZHANG. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(2): 262-270.
[7] CHEN Yun, XUE An-ke, GE Ming, WANG Jian-zhong, LU Ren-quan. On exponential stability for systems with state delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(8): 1296-1303.
[8] Liu Mei-Qin. Stability analysis of neutral-type nonlinear delayed systems: An LMI approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 237-244.
[9] Liu Mei-qin. Interval standard neural network models for nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(4 ): 8-.
[10] BAI Lei-shi, HE Li-ming, TIAN Zuo-hua, SHI Song-jiao. Design of H robust fault detection filter for nonlinear time-delay systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(10): 16-.
[11] ZHANG Sen-lin, LIU Mei-qin. Stability analysis of discrete-time BAM neural networks based on standard neural network models*[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 7): 14-.
[12] ZHANG Sen-lin, LIU Mei-qin. LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 1): 5-.
[13] CAO Feng-wen, LU Ren-quan, SU Hong-ye, CHU Jian. Robust H output feedback control for a class of uncertain Lur’e systems with time-delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5( 9): 14-.
[14] SU Hong-ye, HU Jian-bo, LAM James. ROBUST STABILIZATION OF UNCERTAIN TIME-DELAY SYSTEMS CONTAINING NONLINEAR SATURATING ACTUATORS[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2000, 1(3): 241-248.