Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2005, Vol. 6 Issue ( 1): 5-    DOI: 10.1631/jzus.2005.A0032
    
LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks
ZHANG Sen-lin, LIU Mei-qin
School of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  Studies on the stability of the equilibrium points of continuous bidirectional associative memory (BAM) neural network have yielded many useful results. A novel neural network model called standard neural network model (SNNM) is advanced. By using state affine transformation, the BAM neural networks were converted to SNNMs. Some sufficient conditions for the global asymptotic stability of continuous BAM neural networks were derived from studies on the SNNMs?ˉ stability. These conditions were formulated as easily verifiable linear matrix inequalities (LMIs), whose conservativeness is relatively low. The approach proposed extends the known stability results, and can also be applied to other forms of recurrent neural networks (RNNs).

Key wordsStandard neural network model (SNNM)      Bidirectional associative memory (BAM) neural network      Linear matrix inequality (LMI)      Linear differential inclusion (LDI)      Global asymptotic stability     
Received: 08 October 2003     
CLC:  TP183  
Cite this article:

ZHANG Sen-lin, LIU Mei-qin. LMI-based approach for global asymptotic stability analysis of continuous BAM neural networks. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 1): 5-.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.2005.A0032     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2005/V6/I 1/5

[1] Hui-jiao WANG, Xiao-dong ZHAO, An-ke XUE, Ren-quan LU. Delay-dependent robust control for uncertain discrete singular systems with time-varying delay[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1034-1042.
[2] Deng-feng ZHANG, Hong-ye SU, Jian CHU, Zhi-quan WANG. Suboptimal reliable guaranteed cost control for continuous-time systems with multi-criterion constraints[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1024-1033.
[3] Wei QIAN, Guo-jiang SHEN, You-xian SUN. Dynamical output feedback stabilization for neutral systems with mixed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1043-1049.
[4] Mei-qin LIU, Sen-lin ZHANG, Gang-feng YAN. A new neural network model for the feedback stabilization of nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(8): 1015-1023.
[5] Hui-jiao WANG, An-ke XUE, Yun-fei GUO, Ren-quan LU. Input-output approach to robust stability and stabilization for uncertain singular systems with time-varying discrete and distributed delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(4): 546-551.
[6] Mei-qin LIU, Jian-hai ZHANG. Exponential synchronization of general chaotic delayed neural networks via hybrid feedback[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2008, 9(2): 262-270.
[7] CHEN Yun, XUE An-ke, GE Ming, WANG Jian-zhong, LU Ren-quan. On exponential stability for systems with state delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(8): 1296-1303.
[8] ZHANG Jian-hai, ZHANG Sen-lin, LIU Mei-qin. Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2007, 8(12): 1912-1920.
[9] Liu Mei-Qin. Stability analysis of neutral-type nonlinear delayed systems: An LMI approach[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(Supplement 2): 237-244.
[10] Liu Mei-qin. Interval standard neural network models for nonlinear systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(4 ): 8-.
[11] BAI Lei-shi, HE Li-ming, TIAN Zuo-hua, SHI Song-jiao. Design of H robust fault detection filter for nonlinear time-delay systems[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2006, 7(10): 16-.
[12] ZHANG Sen-lin, LIU Mei-qin. Stability analysis of discrete-time BAM neural networks based on standard neural network models*[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2005, 6( 7): 14-.
[13] CAO Feng-wen, LU Ren-quan, SU Hong-ye, CHU Jian. Robust H output feedback control for a class of uncertain Lur’e systems with time-delays[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2004, 5( 9): 14-.
[14] SU Hong-ye, HU Jian-bo, LAM James. ROBUST STABILIZATION OF UNCERTAIN TIME-DELAY SYSTEMS CONTAINING NONLINEAR SATURATING ACTUATORS[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2000, 1(3): 241-248.