Please wait a minute...
Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering)  2014, Vol. 15 Issue (7): 465-481    DOI: 10.1631/jzus.A1400028
Civil and Mechanical Engineering     
An in-situ slurry fracturing test for slurry shield tunneling
Xue-yan Liu, Da-jun Yuan
School of Civil Engineering, Beijing Jiao Tong University, Beijing 100044, China; Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiao Tong University, Beijing 100044, China
Download:     PDF (0 KB)     
Export: BibTeX | EndNote (RIS)      

Abstract  When performing a slurry shield excavation in the shallow earth cover under a waterway, the support pressure is difficult to calibrate. If not carefully monitored, slurry fracturing or even slurry breakout can occur; water from the river can rush into the slurry circulating system, threatening the security of the project. In this study, an in-situ slurry fracturing apparatus was created to analyze the phenomena of slurry fracturing and fracture propagation. First, the fracturing test procedures and the method of identifying slurry fracturing are introduced. Then, mechanical models of the slurry fracturing and fracture propagation are described and validated with in-situ tests. The models provide fairly good predictions: the driving pressure is related to the properties of both the soil and slurry. Slurry with large parameters for bulk density and viscosity is beneficial for preventing slurry fracturing propagation. However, such parameters have little influence and can be neglected when determining the initial fracturing pressure. Preventing slurry fracturing and breakout is important for not only shield tunnel preparation, but also shield tunneling under dangerous conditions. A crucial factor is setting and limiting the maximum support pressure values. These pressures can be obtained through the in-situ tests and mechanical models described here. These results provide useful references for the Weisan Road Tunnel to be built under the Yangtze River in Nanjing, China.

Key wordsIn-situ slurry fracturing test      Initial fracturing pressure      Fracture propagation      Driving pressure      Slurry shield tunneling     
Received: 16 January 2014      Published: 08 July 2014
CLC:  U45  
Cite this article:

Xue-yan Liu, Da-jun Yuan. An in-situ slurry fracturing test for slurry shield tunneling. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(7): 465-481.

URL:

http://www.zjujournals.com/xueshu/zjus-a/10.1631/jzus.A1400028     OR     http://www.zjujournals.com/xueshu/zjus-a/Y2014/V15/I7/465

[1] Wei Liu, Bettina Albers, Yu Zhao, Xiao-wu Tang. Upper bound analysis for estimation of the influence of seepage on tunnel face stability in layered soils[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(11): 886-902.
[2] Xin-sheng Yin, Ren-peng Chen, Yu-chao Li, Shuai Qi. A column system for modeling bentonite slurry infiltration in sands[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2016, 17(10): 818-827.
[3] Yong Zhang, Yan-yong Xiang. A semi-analytical method and its application for calculating the thermal stress and displacement of sparsely fractured rocks with water flow and heat transfer[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(11): 922-934.
[4] Jin Yu, Shao-jie Chen, Xu Chen, Ya-zhou Zhang, Yan-yan Cai. Experimental investigation on mechanical properties and permeability evolution of red sandstone after heat treatments[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(9): 749-759.
[5] Ting-chun Li, Lian-xun Lyu, Shi-lin Zhang, Jie-cheng Sun. Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2015, 16(8): 644-655.
[6] Ngoc-Anh Do, Daniel Dias, Pierpaolo Oreste. Three-dimensional numerical simulation of mechanized twin stacked tunnels in soft ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(11): 896-913.
[7] Peng-fei Li, Qian Fang, Ding-li Zhang. Analytical solutions of stresses and displacements for deep circular tunnels with liners in saturated ground[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(6): 395-404.
[8] Zeng-hui Zhao, Wei-ming Wang, Xin Gao. Evolution laws of strength parameters of soft rock at the post-peak considering stiffness degradation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2014, 15(4): 282-290.
[9] Zhi-gang Shan, Sheng-jie Di. Loading-unloading test analysis of anisotropic columnar jointed basalts[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 603-614.
[10] Danial Behnia, Kaveh Ahangari, Ali Noorzad, Sayed Rahim Moeinossadat. Predicting crest settlement in concrete face rockfill dams using adaptive neuro-fuzzy inference system and gene expression programming intelligent methods[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(8): 589-602.
[11] Zhen-dong Shan, Dao-sheng Ling, Hao-jiang Ding. Analytical solution for 1D consolidation of unsaturated soil with mixed boundary condition[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2013, 14(1): 61-70.
[12] Chuan He, Kun Feng, Yong Fang, Ying-chao Jiang. Surface settlement caused by twin-parallel shield tunnelling in sandy cobble strata[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(11): 858-869.
[13] Nu-wen Xu, Chun-an Tang, Hong Li, Feng Dai, Ke Ma, Jing-dong Shao, Ji-chang Wu. Excavation-induced microseismicity: microseismic monitoring and numerical simulation[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2012, 13(6): 445-460.
[14] Jin Jiang, Jin-zhong Sun. Comparative study of static and dynamic parameters of rock for the Xishan Rock Cliff Statue[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(10): 771-781.
[15] Zai-ming Zhang. Achievements and problems of geotechnical engineering investigation in China[J]. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 2011, 12(2): 87-102.