Computer Technology & Industrial Engineering |
|
|
|
|
Principal component analysis using neural network |
YANG Jian-gang, SUN Bin-qiang |
Department of Computer Science & Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract The authors present their analysis of the differential equation dX(t)/dt=AX(t)-XT(t)BX(t)X(t), where A is an unsymmetrical real matrix, B is a positive definite symmetric real matrix, X∈Rn; showing that the equation characterizes a class of continuous type full-feedback artificial neural network; We give the analytic expression of the solution; discuss its asymptotic behavior; and finally present the result showing that, in almost all cases, one and only one of following cases is true. 1. For any initial value X0∈Rn, the solution approximates asymptotically to zero vector. In this case, the real part of each eigenvalue of A is non-positive. 2. For any initial value X0 outside a proper subspace of Rn, the solution approximates asymptotically to a nontrivial constant vector &Ytilde;(X0). In this case, the eigenvalue of A with maximal real part is the positive number λ=‖(X0)‖2B and (X0) is the corresponding eigenvector. 3. For any initial value X0 outside a proper subspace of Rn, the solution approximates asymptotically to a non-constant periodic function &Ytilde;(X0,t). Then the eigenvalues of A with maximal real part is a pair of conjugate complex numbers which can be computed.
|
Received: 20 November 2001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|