Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2016, Vol. 17 Issue (4): 338-347    DOI: 10.1631/FITEE.1500359
    
Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach
Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak
Department of Mechanical and Manufacturing Engineering, Aalborg University, Aalborg 9220, Denmark; Department of Computer Engineering, Faculty of Electronics, Wroc?aw University of Technology, Wroclaw 50-370, Poland; Department of Electronics and Computer Science, Koszalin University of Technology, Koszalin 75-453, Poland; Department of Business Informatics, Warsaw University of Technology, Warsaw 00-661, Poland
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  We present an extension of the resource-constrained multi-product scheduling problem for an automated guided vehicle (AGV) served flow shop, where multiple material handling transport modes provide movement of work pieces between machining centers in the multimodal transportation network (MTN). The multimodal processes behind the multi-product production flow executed in an MTN can be seen as processes realized by using various local periodically functioning processes. The considered network of repetitively acting local transportation modes encompassing MTN’s structure provides a framework for multimodal processes scheduling treated in terms of optimization of the AGVs fleet scheduling problem subject to fuzzy operation time constraints. In the considered case, both production takt and operation execution time are described by imprecise data. The aim of the paper is to present a constraint propagation (CP) driven approach to multi-robot task allocation providing a prompt service to a set of routine queries stated in both direct and reverse way. Illustrative examples taking into account an uncertain specification of robots and workers operation time are provided.

Key wordsAutomated guided vehicles (AGVs)      Scheduling      Multimodal process      Fuzzy constraints      Optimization     
Received: 26 October 2015      Published: 05 April 2016
CLC:  TP181  
  O22  
Cite this article:

Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1500359     OR     http://www.zjujournals.com/xueshu/fitee/Y2016/V17/I4/338


模糊操作时间约束下的多模过程优化:声明式建模方法

目的:研究采用自动导引运输车(AGVs)服务的并行流水车间多产品调度问题,实现共享资源最优分配。
创新点:将多产品生产流水线上的多模过程调度问题建模为模糊操作时间约束下的自动导引运输车调度问题,提出了一种约束传播(CP)驱动的多机器人任务分配方案。
方法:首先介绍了AGVs的应用领域,以及近年来关于其调度问题的研究成果。然后用数学理论阐述了多模过程原型,包括多模型运输网络(MTN)、并发流水循环过程(SCCPs)系统和约束编程。最后对两类SCCP优化问题(分析analysis和合成synthesis)进行约束编程并优化,最后分别给出了不确定计算实验分析与验证。
结论:本文所提方法为本地性能评估和由此支持的多模过程性能评估提供了统一的方法。

关键词: 自动导引运输车(AGVs),  调度,  多模过程,  模糊约束,  优化 
[1] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Hamid Reza Boveiri. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 498-510.
[4] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[5] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[6] He Hao, Wei-zhong Fei, Dong-min Miao, Meng-jia Jin, Jian-xin Shen. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 814-824.
[7] Tian-qi Wu, Min Yao, Jian-hua Yang. Dolphin swarm algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.
[8] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[9] Rui Zhao, Gui-he Qin, Jia-qiao Liu. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[10] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[11] Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. A new energy landscape paving heuristic for satellite module layouts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.
[12] Hao XIE,Ruo-feng TONG. Image meshing via hierarchical optimization[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 32-40.
[13] Zi-wu Ren, Zhen-hua Wang, Li-ning Sun. A hybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant humanoid manipulator[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 607-616.
[14] Yong-xing Liu, Ken-li Li, Zhuo Tang, Ke-qin Li. Energy-aware scheduling with reconstruction and frequency equalization on heterogeneous systems[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 519-531.
[15] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. HAPE3D—a new constructive algorithm for the 3D irregular packing problem[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.