Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2015, Vol. 16 Issue (4): 311-320    DOI: 10.1631/FITEE.1400425
    
Unnormalized and normalized forms of gefura measures in directed and undirected networks
Raf Guns, Ronald Rousseau
Institute for Education and Information Sciences, University of Antwerp, Venusstraat 35, Antwerp B-2000, Belgium; Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Leuven B-3001, Belgium
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  In some networks nodes belong to predefined groups (e.g., authors belong to institutions). Common network centrality measures do not take this structure into account. Gefura measures are designed as indicators of a node’s brokerage role between such groups. They are defined as variants of betweenness centrality and consider to what extent a node belongs to shortest paths between nodes from different groups. In this article we make the following new contributions to their study: (1) We systematically study unnormalized gefura measures and show that, next to the ‘structural’ normalization that has hitherto been applied, a ‘basic’ normalization procedure is possible. While the former normalizes at the level of groups, the latter normalizes at the level of nodes. (2) Treating undirected networks as equivalent to symmetric directed networks, we expand the definition of gefura measures to the directed case. (3) It is shown how Brandes’ algorithm for betweenness centrality can be adjusted to cover these cases.

Key wordsNetworks subdivided in groups      Partitions      Gefura measures      Q-measures      Brokerage role      Directed and undirected networks      Brandes’      algorithm     
Received: 09 December 2014      Published: 03 April 2015
CLC:  TP393  
  G350  
Cite this article:

Raf Guns, Ronald Rousseau. Unnormalized and normalized forms of gefura measures in directed and undirected networks. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 311-320.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/FITEE.1400425     OR     http://www.zjujournals.com/xueshu/fitee/Y2015/V16/I4/311


有向网络和无向网络中桥接(gefura)测度的非归一化和归一化形式

目的:针对现实生活中某些网络节点属于预先定义的小组而常规网络其中心性测度并未考虑到这一结构特点,本文以桥接测度作为小组间中介节点的指标并研究之。
创新点:系统性研究非归一化桥接测度,提出除“结构化”归一化(组级别)之外“基本”归一化(节点级别)也是可行的。将无向网络视为对称有向网络,将桥接测度定义推广至有向网络。
方法:首先系统性研究有向网络中的非归一化桥接测度。然后研究有向网络中的归一化桥接测度,指出除“结构化”归一化(组级别)之外,“基本”归一化(节点级别)也是可行的。将无向网络视为对称有向网络,所得结论对于无向网络同样成立。最后,说明如何调节Brandes算法使之应用于测量所提网络的中介中心性。
结论:对于研究复杂网络的社会学家、信息计量学者等,若其所研究的网络被分割为小组,则桥接测度将是十分有用的工具。

关键词: 细分为组的网络,  分割,  桥接(gefura)测度,  Q-测度,  中介角色,  有向网络和无向网络,  Brandes算法 
[1] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[2] Zhao-yang ZHANG, Wei LYU. Interference coordination in full-duplex HetNet with large-scale antenna arrays[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(6): 830-840.
[3] Wen-yan CUI, Xiang-ru MENG , Bin-feng YANG , Huan-huan YANG, Zhi-yuan ZHAO. An efficient lossy link localization approach for wireless sensor networks[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(5): 689-707.
[4] Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz. Neuro-heuristic computational intelligence for solving nonlinear pantograph systems[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 464-484.
[5] Shafqat Ullah Khan, Ijaz Mansoor Qureshi, Fawad Zaman, Wasim Khan. Detecting faulty sensors in an array using symmetrical structure and cultural algorithm hybridized with differential evolution[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 235-245.
[6] Yuan Liang, Wei-feng Lv, Wen-jun Wu, Ke Xu. Friendship-aware task planning in mobile crowdsourcing[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(1): 107-121.
[7] Xing-ru Peng, Wei Zhang, Yan-yan Liu. A pipelined Reed-Solomon decoder based on a modified step-by-step algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(9): 954-961.
[8] Tian-qi Wu, Min Yao, Jian-hua Yang. Dolphin swarm algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.
[9] Gang Xiong, Yu-xiang Hu, Le Tian, Ju-long Lan, Jun-fei Li, Qiao Zhou. A virtual service placement approach based on improved quantum genetic algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(7): 661-671.
[10] Rong Jiao, Lu-ping Xu, Hua Zhang, Cong Li. Orbit determination using incremental phase and TDOA of X-ray pulsar[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 543-552.
[11] Jing-fa Liu, Liang Hao, Gang Li, Yu Xue, Zhao-xia Liu, Juan Huang. Multi-objective layout optimization of a satellite module using the Wang-Landau sampling method with local search[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 527-542.
[12] Jing Li, Xiao-run Li, Li-jiao Wang, Liao-ying Zhao. Fast implementation of kernel simplex volume analysis based on modified Cholesky factorization for endmember extraction[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(3): 250-257.
[13] Meng-di Jiang, Yi Li, Wei Liu. Properties of a general quaternion-valued gradient operator and its applications to signal processing[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 83-95.
[14] De-xuan Zou, Gai-ge Wang, Gai Pan, Hong-wei Qi. A modified simulated annealing algorithm and an excessive area model for floorplanning using fixed-outline constraints[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(11): 1228-1244.
[15] Tao-cheng Hu, Jin-hui Yu. Max-margin based Bayesian classifier[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 973-981.