Please wait a minute...
Front. Inform. Technol. Electron. Eng.  2014, Vol. 15 Issue (12): 1123-1137    DOI: 10.1631/jzus.C1400037
    
Optimizing urban traffic control using a rational agent
Salvador Ibarra-Martínez, José A. Castán-Rocha, Julio Laria-Menchaca
Engineering School, Autonomous University of Tamaulipas, Victoria 87000, Mexico
Download:   PDF(0KB)
Export: BibTeX | EndNote (RIS)      

Abstract  This paper is devoted to developing and evaluating a set of technologies with the objective of designing a methodology for the implementation of sophisticated traffic lights by means of rational agents. These devices would be capable of optimizing the behavior of a junction with multiple traffic signals, reaching a higher level of autonomy without losing reliability, accuracy, or efficiency in the offered services. In particular, each rational agent in a traffic signal will be able to analyze the requirements and constraints of the road, in order to know its level of demand. With such information, the rational agent will adapt its light cycles with the view of accomplishing more fluid traffic patterns and minimizing the pollutant environmental emissions produced by vehicles while they are stopped at a red light, through using a case-based reasoning (CBR) adaptation. This paper also integrates a microscopic simulator developed to run a set of tests in order to compare the presented methodology with traditional traffic control methods. Two study cases are shown to demonstrate the efficiency of the introduced approach, increasing vehicular mobility and reducing harmful activity for the environment. For instance, in the first scenario, taking into account the studied traffic volumes, our approach increases mobility by 23% and reduces emissions by 35%. When the roads are managed by sophisticated traffic lights, a better level of service and considerable environmental benefits are achieved, demonstrating the utility of the presented approach.

Key wordsRational agents      Traffic light control      Optimization      Traffic mobility     
Received: 07 February 2014      Published: 05 December 2014
CLC:  TP273  
  U491  
Cite this article:

Salvador Ibarra-Martínez, José A. Castán-Rocha, Julio Laria-Menchaca. Optimizing urban traffic control using a rational agent. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1123-1137.

URL:

http://www.zjujournals.com/xueshu/fitee/10.1631/jzus.C1400037     OR     http://www.zjujournals.com/xueshu/fitee/Y2014/V15/I12/1123


使用理性行为人优化城区交通控制

本文开发并评估了一套通过\"理性行为人\"实现先进交通信号灯的技术。这种交通信号灯可以优化具有多个交通信号灯路口的交通状况,从而提升自治性且不失可靠性、准确性和效率。特别的,面对交通信号,各个理性行为者可以分析对道路的需求以及限制,从而获知其需求水平。基于此信息,理性行为者通过实例推理(case-base dreasoning, CBR)调控其指示灯,以实现更大的交通流动性以及机动车在红灯停止状态下最少的环境污染物排放。本文采纳了一种微观仿真方法(microscopic simulator)用于所提方法与传统交通控制方法的比较。通过两个研究案例,本文方法在提升机动车流动性和减小对环境的损坏两方面体现了其有效性。例如,第一个案例中,考虑交通流量,本文方法可提升23%的流动性,降低35%的污染排放。以此先进交通灯控制道路,可提供更高服务水平和可观环境效益。

关键词: 理性行为者,  交通灯控制,  优化,  交通流动性 
[1] Lin CAO , Shuo TANG , Dong ZHANG. Flight control for air-breathing hypersonic vehicles using linear quadratic regulator design based on stochastic robustness analysis[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(7): 882-897.
[2] Gopi Ram , Durbadal Mandal , Sakti Prasad Ghoshal , Rajib Kar . Optimal array factor radiation pattern synthesis for linear antenna array using cat swarm optimization: validation by an electromagnetic simulator[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 570-577.
[3] Hamid Reza Boveiri. An incremental ant colony optimization based approach to task assignment to processors for multiprocessor scheduling[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 498-510.
[4] Ali Darvish Falehi, Ali Mosallanejad. Dynamic stability enhancement of interconnected multi-source power systems using hierarchical ANFIS controller-TCSC based on multi-objective PSO[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(3): 394-409.
[5] Jun-hong Zhang, Yu Liu. Application of complete ensemble intrinsic time-scale decomposition and least-square SVM optimized using hybrid DE and PSO to fault diagnosis of diesel engines[J]. Front. Inform. Technol. Electron. Eng., 2017, 18(2): 272-286.
[6] He Hao, Wei-zhong Fei, Dong-min Miao, Meng-jia Jin, Jian-xin Shen. Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 814-824.
[7] Tian-qi Wu, Min Yao, Jian-hua Yang. Dolphin swarm algorithm[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 717-729.
[8] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. Intelligent computing budget allocation for on-road trajectory planning based on candidate curves[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[9] Izabela Nielsen, Robert Wójcik, Grzegorz Bocewicz, Zbigniew Banaszak. Multimodal processes optimization subject to fuzzy operation time constraints: declarative modeling approach[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 338-347.
[10] Rui Zhao, Gui-he Qin, Jia-qiao Liu. A rectangle bin packing optimization approach to the signal scheduling problem in the FlexRay static segment[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 375-388.
[11] Xin Li, Jin Sun, Fu Xiao, Jiang-shan Tian. An efficient bi-objective optimization framework for statistical chip-level yield analysis under parameter variations[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(2): 160-172.
[12] Jing-fa Liu, Juan Huang, Gang Li, Wen-jie Liu, Ting-zhao Guan, Liang Hao. A new energy landscape paving heuristic for satellite module layouts[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(10): 1031-1043.
[13] Hao XIE,Ruo-feng TONG. Image meshing via hierarchical optimization[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(1): 32-40.
[14] Zi-wu Ren, Zhen-hua Wang, Li-ning Sun. A hybrid biogeography-based optimization method for the inverse kinematics problem of an 8-DOF redundant humanoid manipulator[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 607-616.
[15] Xiao Liu, Jia-min Liu, An-xi Cao, Zhuang-le Yao. HAPE3D—a new constructive algorithm for the 3D irregular packing problem[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(5): 380-390.