Please wait a minute...
Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (4): 485-497    DOI: 10.1631/FITEE.1500399
Regular Paper     
适用于湖水监测的水下滑翔机的空间高效转向方法
Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu
A space-saving steering method for underwater gliders in lake monitoring
Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu
The State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF 
摘要: 概要:越来越多的水下滑翔机正在被应用到湖水监测中。由于湖水具有有限的竖直空间,为了让水下滑翔机能够扩大不同监测点的间距,水下滑翔机应具有空间高效的转向能力。本文提出一种使用小俯仰角的转向方法,以便让外形固定的水下滑翔机能够具有空间高效的转向能力。使用小俯仰角转向可以提高水下滑翔机在单位竖直空间下的转向角度。本文提出了一种同时适用于大小攻角的水下滑翔机水动力模型,对小俯仰角转向过程中最优的净浮力与横滚角度展开了研究。为了验证水动力模型和转向方法的适用性,研制了小型水下滑翔机原型机并进行了湖水试验。试验表明,水下滑翔机使用小俯仰角进行转向比使用大俯仰角转向更能节省竖直方向消耗的空间。仿真结果与湖水试验结果一致。另外,多监测点连续监测试验表明,与比不使用小俯仰角转向相比,水下滑翔机使用小俯仰角进行转向能够覆盖更大的监测区域。
关键词: 水下滑翔机湖水监测空间高效转向方法小俯仰角水动力    
Abstract: An increasing number of underwater gliders have been applied to lake monitoring. Lakes have a limited vertical space. Therefore, good space-saving capacity is required for underwater gliders to enlarge the spacing between monitoring waypoints. This paper presents a space-saving steering method under a small pitch angle (SPA) for appearance-fixed underwater gliders. Steering under an SPA increases the steering angle in per unit vertical space. An amended hydrodynamic model for both small and large attack angles is presented to help analyze the steering process. Analysis is conducted to find the optimal parameters of net buoyancy and roll angle for steering under an SPA. A lake trial with a prototype tiny underwater glider (TUG) is conducted to inspect the applicability of the presented model. The trial results show that steering under an SPA saves vertical space, unlike that under a large pitch angle. Simulation results of steering are consistent with the trial results. In addition, multiple-waypoint trial shows that monitoring with steering under an SPA covers a larger horizontal displacement than that without steering.
Key words: Underwater glider    Lake monitoring    Space-saving    Steering method    Small pitch angle (SPA)    Hydrodynamics
收稿日期: 2015-11-16 出版日期: 2017-04-12
CLC:  TP242  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
Yu-shi Zhu
Can-jun Yang
Shi-jun Wu
Qing Li
Xiao-le Xu

引用本文:

Yu-shi Zhu, Can-jun Yang, Shi-jun Wu, Qing Li, Xiao-le Xu. A space-saving steering method for underwater gliders in lake monitoring. Front. Inform. Technol. Electron. Eng., 2017, 18(4): 485-497.

链接本文:

http://www.zjujournals.com/xueshu/fitee/CN/10.1631/FITEE.1500399        http://www.zjujournals.com/xueshu/fitee/CN/Y2017/V18/I4/485

1 Ahmadzadeh, S.R., Kormushev, P., Caldwell, D.G., 2014. Multi-objective reinforcement learning for AUV thruster failure recovery. IEEE Symp. on Adaptive Dynamic Programming and Reinforcement Learning, p.1-8.
doi: 10.1109/ADPRL.2014.7010621
2 Austin, J., 2013a. Observations of near-inertial energy in Lake Superior. Limnol. Ocean., 58(2):715-728.
doi: 10.4319/lo.2013.58.2.0715
3 Austin, J., 2013b. The potential for autonomous underwater gliders in large lake research. J. Great Lake Res., 39(Supplement 1):8-13.
doi: 10.1016/j.jglr.2013.01.004
4 Bardyshev, V.I., 2004. Testing underwater bottom-moored antenna arrays in the sea and in a man-made lake. Acoust. Phys., 50(6):641-646.
doi: 10.1134/1.1825092
5 Caffaz, A., Caiti, A., Casalino, G., et al., 2010. The hybrid glider/AUV folaga. IEEE Robot. Autom. Mag., 17(1): 31-44.
doi: 10.1109/MRA.2010.935791
6 Cao, J.J., Cao, J.L., Yao, B.H., et al., 2015. Three dimensional model, hydrodynamics analysis and motion simulation of an underwater glider. OCEANS, p.1-8.
doi: 10.1109/OCEANS-Genova.2015.7271365
7 Chen, Y., Lu, C.J., Guo, J.H., 2010. Numerical study of the cavitating flows over underwater vehicle with large angle of attack. J. Hydrodyn., 22(5):893-898.
doi: 10.1016/S1001-6058(10)60048-0
8 Denkenberger, J.S., Driscoll, C.T., Effler, S.W., et al., 2007. Comparison of an urban lake targeted for rehabilitation and a reference lake based on robotic monitoring. Lake Reserv. Manag., 23(1):11-26.
doi: 10.1080/07438140709353906
9 Fan, S., Woolsey, C.A., 2014. Dynamics of underwater gliders in currents. Ocean Eng., 84:249-258.
doi: 10.1016/j.oceaneng.2014.03.024
10 Geisbert, J.S., 2005. Underwater Gliders: Dynamics, Control and Design. PhD Thesis, Princeton University, Princeton, USA.
11 Geisbert, J.S., 2007. Hydrodynamic modeling for Autonomous Underwater Vehicles Using Computational and Semi-Empirical Methods. MS Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.
12 He, R., Wooller, M.J., Pohlman, J.W., et al., 2012. Diversity of active aerobic methanotrophs along depth profiles of Arctic and Subarctic lake water column and sediments. ISME J., 6(10):1937-1948.
doi: 10.1038/ismej.2012.34
13 Hussain, N.A.A., Arshad, M.R., Mohd-Mokhtar, R., 2011. Underwater glider modelling and analysis for net buoyancy, depth and pitch angle control. Ocean Eng., 38(16): 1782-1791.
doi: 10.1016/j.oceaneng.2011.09.001
14 Isa, K., Arshad, M.R., 2011. Motion simulation for propeller-driven USM underwater glider with controllable wings and rudder. 2nd Int. Conf. on Instrumentation Control and Automation, p.316-321.
doi: 10.1109/ICA.2011.6130179
15 Isa, K., Arshad, M.R., Ishak, S., 2014. A hybrid-driven underwater glider model, hydrodynamics estimation, and an analysis of the motion control. Ocean Eng., 81:111-129.
doi: 10.1016/j.oceaneng.2014.02.002
16 Ivanov, A.V., Gladkochub, D.P., Déverchère, J., et al., 2013. Introduction to special issue: geology of the Lake Baikal region. J. Asian Earth Sci., 62:1-3.
doi: 10.1016/j.jseaes.2012.12.010
17 Jones, C., Allsup, B., DeCollibus, C., 2014. Slocum glider: expanding our understanding of the oceans. OCEANS, p.1-10.
doi: 10.1109/OCEANS.2014.7003260
18 Leonard, N.E., Paley, D.A., Davis, R.E., et al., 2010. Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay. J. Field Rob., 27(6):718-740.
doi: 10.1002/rob.20366
19 Li, Y., Gal, G., Makler-Pick, V., et al., 2014. Examination of the role of the microbial loop in regulating lake nutrient stoichiometry and phytoplankton dynamics. Biogeosciences, 11(11):2939-2960.
doi: 10.5194/bg-11-2939-2014
20 Lim, D.S.S., Brady, A.L., Abercromby, A.F., et al., 2011. A historical overview of the pavilion lake research project—analog science and exploration in an underwater environment. GSA Spec. Papers, 483:85-116.
doi: 10.1130/2011.2483(07)
21 Mahmoudian, N., Geisbert, J., Woolsey, C., 2010. Approximate analytical turning conditions for underwater gliders: implications for motion control and path planning. IEEE J. Ocean. Eng., 35(1):131-143.
doi: 10.1109/JOE.2009.2039655
22 Peng, S.L., Yang, C.J., Fan, S.S., et al., 2014. Hybrid underwater glider for underwater docking: modeling and performance evaluation. Mar. Technol. Soc. J., 48(6): 112-124.
doi: 10.4031/MTSJ.48.6.5
23 Suberg, L., Wynn, R.B., van der Kooij, J., et al., 2014. Assessing the potential of autonomous submarine gliders for ecosystem monitoring across multiple trophic levels (plankton to cetaceans) and pollutants in shallow shelf seas. J. Meth. Ocean., 10:70-89.
doi: 10.1016/j.mio.2014.06.002
24 Wang, C.T., Yu, J.C., Wu, L.H., et al., 2007. Research on movement mechanism simulation and experiment of underwater glider. Ocean Eng., 25(1):64-69.
doi: 10.16483/j.issn.1005-9865.2007.01.010
25 Wang, L.F., Yang, L.Y., Kong, L.H., et al., 2014. Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. J. Geochem. Exp., 140:87-95.
doi: 10.1016/j.gexplo.2014.02.008
26 Wang, Y.H., Zhang, H.W., Wang, S.X., 2009. Trajectory control strategies for the underwater glider. Int. Conf. on Measuring Technology and Mechatronics Automation, p.918-921.
doi: 10.1109/ICMTMA.2009.617
27 Weng, Y., Yang, H., He, J.Y., et al., 2015. Microstructure measurement form an underwater glider: motion analysis and experimental results. OCEANS, p.1-5.
doi: 10.1109/OCEANS-Genova.2015.7271488
28 Yang, C.J., Peng, S.L., Fan, S.S., 2014. Performance and stability analysis for ZJU glider. Mar. Technol. Soc. J., 48(3):88-103.
doi: 10.4031/MTSJ.48.3.6
29 Zhang, F.T., Zhang, F.M., Tan, X.B., 2014. Tail-enabled spiraling maneuver for gliding robotic fish. J. Dynam. Syst. Meas. Contr., 136(4):041028.
doi: 10.1115/1.4026965
[1] Wei Yang, Can-jun Yang, Ting Xu. 基于人体髋关节转动中心分析的髋关节外骨骼仿生设计[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(8): 792-802.
[2] Xiao-xin Fu, Yong-heng Jiang, De-xian Huang, Jing-chun Wang, Kai-sheng Huang. 基于候选曲线的公路轨迹规划中的智能计算量分配[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 553-565.
[3] Qiang Liu, Jia-chen Ma. 基于子空间的离散时滞系统辨识[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(6): 566-575.
[4] Feng-yu Zhou, Xian-feng Yuan, Yang Yang, Zhi-fei Jiang, Chen-lei Zhou. 一种室内移动机器人高精度视觉定位传感器及其工作原理[J]. Front. Inform. Technol. Electron. Eng., 2016, 17(4): 365-374.
[5] Qian-shan Li, Rong Xiong, Shoudong Huang, Yi-ming Huang. 一种利用半稠密点云及RGB图像构建稠密表面模型地图的方法[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 594-606.
[6] Chao Li, Rong Xiong, Qiu-guo Zhu, Jun Wu, Ya-liang Wang, Yi-ming Huang. 基于髋策略的欠驱动双足机器人站立抗扰动恢复控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(7): 579-593.
[7] Yang Yi, Zhi-yun Lin. 稳定与灵活:基于欠驱动机器人在未知变化环境的奔跑运动控制[J]. Front. Inform. Technol. Electron. Eng., 2015, 16(4): 283-292.
[8] Hüseyin Oktay Erkol, Hüseyin Demirel. 多自由度系统运动学方程求解的VHDL应用[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(12): 1164-1173.
[9] Qian Bi, Can-jun Yang. 人机交互力控制:针对食指外骨骼控制的模型参考自适应阻抗控制策略[J]. Front. Inform. Technol. Electron. Eng., 2014, 15(4): 275-283.
[10] Shuang-shuang Fan, Can-jun Yang, Shi-lin Peng, Kai-hu Li, Yu Xie, Shao-yong Zhang. Underwater glider design based on dynamic model analysis and prototype developmentv[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(8): 583-599.
[11] Xin Ma, Ya Xu, Guo-qiang Sun, Li-xia Deng, Yi-bin Li. State-chain sequential feedback reinforcement learning for path planning of autonomous mobile robots[J]. Front. Inform. Technol. Electron. Eng., 2013, 14(3): 167-178.
[12] Hao-jie Zhang, Jian-wei Gong, Yan Jiang, Guang-ming Xiong, Hui-yan Chen. An iterative linear quadratic regulator based trajectory tracking controller for wheeled mobile robot[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(8): 593-600.
[13] Zheng-wei Zhang, Hong Zhang, Yi-bin Li. Biologically inspired collective construction with visual landmarks[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(5): 315-327.
[14] Shuang-quan Wen, Tie-jun Wu. Grasp evaluation and contact points planning for polyhedral objects using a ray-shooting algorithm[J]. Front. Inform. Technol. Electron. Eng., 2012, 13(3): 218-231.
[15] Wen-fei WANG, Rong XIONG, Jian CHU. Map building for dynamic environments using grid vectors[J]. Front. Inform. Technol. Electron. Eng., 2011, 12(7): 574-588.