Regular Paper |
|
|
|
|
用于解决非线性受电弓系统的启发式神经网络计算 |
Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz |
|
Neuro-heuristic computational intelligence for solving nonlinear pantograph systems |
Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Imtiaz Khan, Muhammed Ibrahem Syam, Abdul Majid Wazwaz |
Department of Electrical Engineering, COMSATs Institute of Information Technology, Attock 43200, Pakistan; Department of Mathematics, University of Gujrat, Gujrat 50700, Pakistan; Department of Mathematics, Preston University, Islamabad Campus, Kohat, Islamabad 44000, Pakistan; Department of Mathematical Sciences, United Arab Emirates University, Al-Ain Box 15551, UAE; Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA |
1 |
Agarwal, R.P., Chow, Y.M., 1986. Finite difference methods for boundary-value problems of differential equations with deviating arguments. Comput. Math. Appl., 12(11): 1143-1153.
doi: 10.1016/0898-1221(86)90018-0
|
2 |
Arqub, O.A., Zaer, A.H., 2014. Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inform. Sci., 279:396-415.
doi: 10.1016/j.ins.2014.03.128
|
3 |
Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F., 2007. Intoduction to the Theory of Functional Differential Equations: Methods and Applications. Hindawi Publishing Corporation, New York, USA.
doi: 10.1155/9789775945495
|
4 |
Barro, G., So, O., Ntaganda, J.M., et al., 2008. A numerical method for some nonlinear differential equation models in biology. Appl. Math. Comput., 200(1):28-33.
doi: 10.1016/j.amc.2007.10.041
|
5 |
Chakraverty, S., Mall, S., 2014. Regression-based weight generation algorithm in neural network for solution of initial and boundary value problems. Neur. Comput. Appl., 25(3):585-594.
doi: 10.1007/s00521-013-1526-4
|
6 |
Dehghan, M., Salehi, R., 2010. Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput. Phys. Commun., 181:1255-1265.
doi: 10.1016/j.cpc.2010.03.014
|
7 |
Derfel, G., Iserles, A., 1997. The pantograph equation in the complex plane. J. Math. Anal. Appl., 213(1):117-132.
doi: 10.1006/jmaa.1997.5483
|
8 |
Evans, D.J., Raslan, K.R., 2005. The Adomian decomposition method for solving delay differential equation. Int. J. Comput. Math., 82(1):49-54.
doi: 10.1080/00207160412331286815
|
9 |
Holland, J.H., 1975. Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The University of Michigan Press, Ann Arbor, USA.
|
10 |
Iserles, A., 1993. On the generalized pantograph functional-differential equation. Eur. J. Appl. Math., 4(1):1-38.
doi: 10.1017/S0956792500000966
|
11 |
Khan, J.A., Raja, M.A.Z., Qureshi, I.M., 2011. Novel approach for van der Pol oscillator on the continuous time domain. Chin. Phys. Lett., 28:110205.
doi: 10.1088/0256-307X/28/11/110205
|
12 |
Khan, J.A., Raja, M.A.Z., Syam, M.A., et al., 2015. Design and application of nature inspired computing approach for non-linear stiff oscillatory problems. Neur. Comput. Appl., 26(7):1763-1780.
doi: 10.1007/s00521-015-1841-z
|
13 |
Mall, S., Chakraverty, S., 2014a. Chebyshev neural network based model for solving Lane–Emden type equations. Appl. Math. Comput., 247:100-114.
doi: 10.1016/j.amc.2014.08.085
|
14 |
Mall, S., Chakraverty, S., 2014b. Numerical solution of nonlinear singular initial value problems of Emden–Fowler type using Chebyshev neural network method. Neurocomputing, 149(B):975-982.
doi: 10.1016/j.neucom.2014.07.036
|
15 |
McFall, K.S., 2013. Automated design parameter selection for neural networks solving coupled partial differential equations with discontinuities. J. Franklin Inst., 350(2): 300-317.
doi: 10.1016/j.jfranklin.2012.11.003
|
16 |
Ockendon, J.R., Tayler, A.B., 1971. The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. A, 322(1551):447-468.
doi: 10.1098/rspa.1971.0078
|
17 |
Pandit, S., Kumar, M., 2014. Haar wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems. Appl. Math. Inform. Sci., 8(6): 2965-2974.
|
18 |
Peng, Y.G., Jun, W., Wei, W., 2014. Model predictive control of servo motor driven constant pump hydraulic system in injection molding process based on neurodynamic optimization. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(2):139-146.
doi: 10.1631/jzus.C1300182
|
19 |
Potra, F.A., Wright, S.J., 2000. Interior-point methods. J. Comput. Appl. Math., 124(1-2):281-302.
doi: 10.1016/S0377-0427(00)00433-7
|
20 |
Raja, M.A.Z., 2014a. Numerical treatment for boundary value problems of pantograph functional differential equation using computational intelligence algorithms. Appl. Soft Comput., 24:806-821.
doi: 10.1016/j.asoc.2014.08.055
|
21 |
Raja, M.A.Z., 2014b. Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci., 26(3):195-214.
doi: 10.1080/09540091.2014.907555
|
22 |
Raja, M.A.Z., 2014c. Stochastic numerical techniques for solving Troesch’s problem. Inform. Sci., 279:860-873.
doi: 10.1016/j.ins.2014.04.036
|
23 |
Raja, M.A.Z., 2014d. Unsupervised neural networks for solving Troesch’s problem. Chin. Phys. B, 23(1):018903.
|
24 |
Raja, M.A.Z., Ahmad, S.I., 2014. Numerical treatment for solving one-dimensional Bratu problem using neural networks. Neur. Comput. Appl., 24(3):549-561.
doi: 10.1007/s00521-012-1261-2
|
25 |
Raja, M.A.Z., Samar, R., 2014a. Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124:178-193.
doi: 10.1016/j.neucom.2013.07.013
|
26 |
Raja, M.A.Z., Samar, R., 2014b. Numerical treatment of nonlinear MHD Jeffery–Hamel problems using stochastic algorithms. Comput. Fluids, 91:28-46.
doi: 10.1016/j.compfluid.2013.12.005
|
27 |
Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010a. Evolutionary computational intelligence in solving the fractional differential equations. Asian Conf. on Intelligent Information and Database Systems, p.231-240.
doi: 10.1007/978-3-642-12145-6_24
|
28 |
Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010b. Heuristic computational approach using swarm intelligence in solving fractional differential equations. Proc. 12th Annual Conf. Companion on Genetic and Evolutionary Computation, p.2023-2026.
doi: 10.1145/1830761.1830850
|
29 |
Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2010c. A new stochastic approach for solution of Riccati differential equation of fractional order. Ann. Math. Artif. Intell., 60(3):229-250.
doi: 10.1007/s10472-010-9222-x
|
30 |
Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011a. Solution of fractional order system of Bagley-Torvik equation using evolutionary computational intelligence. Math. Prob. Eng., 2011:765075.
doi: 10.1155/2011/675075
|
31 |
Raja, M.A.Z., Khan, J.A., Qureshi, I.M., 2011b. Swarm intelligence optimized neural network for solving fractional order systems of Bagley-Tervik equation. Eng. Intell. Syst., 19(1):41-51.
|
32 |
Raja, M.A.Z., Khan, J.A., Ahmad, S.I., et al., 2012. A new stochastic technique for Painlevé equation-I using neural network optimized with swarm intelligence. Comput. Intell. Neur., 2012:721867.
doi: 10.1155/2012/721867
|
33 |
Raja, M.A.Z., Ahmad, S.I., Samar, R., 2013. Neural network optimized with evolutionary computing technique for solving the 2-dimensional Bratu problem. Neur. Comput. Appl., 23(7):2199-2210.
doi: 10.1007/s00521-012-1170-4
|
34 |
Raja, M.A.Z., Samar, R., Rashidi, M.M., 2014a. Application of three unsupervised neural network models to singular nonlinear BVP of transformed 2D Bratu equation. Neur. Comput. Appl., 25(7):1585-1601.
doi: 10.1007/s00521-014-1641-x
|
35 |
Raja, M.A.Z., Ahmad, S.I., Samar, R., 2014b. Solution of the 2-dimensional Bratu problem using neural network, swarm intelligence and sequential quadratic programming. Neur. Comput. Appl., 25(7):1723-1739.
doi: 10.1007/s00521-014-1664-3
|
36 |
Raja, M.A.Z., Khan, J.A., Shah, S.M., et al., 2015a. Comparison of three unsupervised neural network models for first Painlevé transcendent. Neur. Comput. Appl., 26(5):1055-1071.
doi: 10.1007/s00521-014-1774-y
|
37 |
Raja, M.A.Z., Sabir, Z., Mahmood, N., et al., 2015b. Design of stochastic solvers based on genetic algorithms for solving nonlinear equations. Neur. Comput. Appl., 26(1):1-23.
doi: 10.1007/s00521-014-1676-z
|
38 |
Raja, M.A.Z., Manzar, M.A., Samar, R., 2015c. An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl. Math. Model., 39(10-11):3075-3093.
doi: 10.1016/j.apm.2014.11.024
|
39 |
Raja, M.A.Z., Khan, J.A., Behloul, D., et al., 2015d. Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Appl. Soft Comput., 26:244-256.
doi: 10.1016/j.asoc.2014.10.009
|
40 |
Raja, M.A.Z., Khan, J.A., Haroon, T., 2015e. Numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiw. Inst. Chem. Eng., 48:26-39.
doi: 10.1016/j.jtice.2014.10.018
|
41 |
Saadatmandi, A., Dehghan, M., 2009. Variational iteration method for solving a generalized pantograph equation. Comput. Math. Appl., 58(11-12):2190-2196.
doi: 10.1016/j.camwa.2009.03.017
|
42 |
Sedaghat, S., Ordokhani, Y., Dehghan, M., 2012. Numerical solution of the delay differential equations of pantograph type via Chebyshev polynomials. Commun. Nonl. Sci. Numer. Simul., 17(12):4815-4830.
doi: 10.1016/j.cnsns.2012.05.009
|
43 |
Shakeri, F., Dehghan, M., 2010. Application of the decomposition method of Adomian for solving the pantograph equation of order m. J. Phys. Sci., 65(5):453-460.
doi: 10.1515/zna-2010-0510
|
44 |
Srinivasan, S., Saghir, M.Z., 2014. Predicting thermodiffusion in an arbitrary binary liquid hydrocarbon mixtures using artificial neural networks. Neur. Comput. Appl., 25(5): 1193-1203.
doi: 10.1007/s00521-014-1603-3
|
45 |
Tang, L., Ying, G., Liu, Y.J., 2014. Adaptive near optimal neural control for a class of discrete-time chaotic system. Neur. Comput. Appl., 25(5):1111-1117.
doi: 10.1007/s00521-014-1595-z
|
46 |
Tohidi, E., Bhrawy, A.H., Erfani, K.A., 2013. A collocation method based on Berneoulli operational matrix for numerical solution of generalized pantograph equation. Appl. Math. Model, 37(6):4283-4294.
doi: 10.1016/j.apm.2012.09.032
|
47 |
Troiano, L., Cosimo, B., 2014. Genetic algorithms supporting generative design of user interfaces: examples. Inform. Sci., 259:433-451.
doi: 10.1016/j.ins.2012.01.006
|
48 |
Uysal, A., Raif, B., 2013. Real-time condition monitoring and fault diagnosis in switched reluctance motors with Kohonen neural network. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(12):941-952.
doi: 10.1631/jzus.C1300085
|
49 |
Wright, S.J., 1997. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, USA.
|
50 |
Xu, D.Y., Yang, S.L., Liu, R.P., 2013. A mixture of HMM, GA, and Elman network for load prediction in cloud-oriented data centers. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 14(11):845-858.
doi: 10.1631/jzus.C1300109
|
51 |
Yusufoğlu, E., 2010. An efficient algorithm for solving gener alized pantograph equations with linear functional argument. Appl. Math. Comput., 217(7):3591-3595.
doi: 10.1016/j.amc.2010.09.005
|
52 |
Yüzbaşı, Ş., Mehmet, S., 2013. An exponential approximation for solutions of generalized pantograph-delay differential equations. Appl. Math. Model., 37(22):9160-9173.
doi: 10.1016/j.apm.2013.04.028
|
53 |
Yüzbaşı, Ş., Sahin, N., Sezer, M., 2011. A Bessel collocation method for numerical solution of generalized pantograph equations. Numer. Meth. Part. Diff. Eq., 28(4):1105-1123.
doi: 10.1002/num.20660
|
54 |
Zhang, H.G., Wang, Z., Liu, D., 2008. Global asymptotic stability of recurrent neural networks with multiple time-varying delays. IEEE Trans. Neur. Netw., 19(5): 855-873.
doi: 10.1109/TNN.2007.912319
|
55 |
Zhang, Y.T., Liu, C.Y., Wei, S.S., et al., 2014. ECG quality assessment based on a kernel support vector machine and genetic algorithm with a feature matrix. J. Zhejiang Univ.-Sci. C (Comput. & Electron.), 15(7):564-573.
doi: 10.1631/jzus.C1300264
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|